Find the integral of
(y2-1) dx-2dy = 0
(y2−1)dx−2dy=0(y^{2}−1)dx−2dy=0(y2−1)dx−2dy=0
y2−1−2y′=0y^{2}−1−2y′=0y2−1−2y′=0
y2−1=2y′y^{2}−1=2y'y2−1=2y′
2y2−1dy=dx\frac{2}{y^{2}-1}dy=dxy2−12dy=dx
∫2y2−1dy=∫dx\intop\frac{2}{y^{2}-1}dy=\intop dx∫y2−12dy=∫dx
12.2in(y−1y+1)=x+C\frac{1}{2}.2 in(\frac{y-1}{y+1})=x+ C21.2in(y+1y−1)=x+C
y−1y+1=ex+C\frac{y-1}{y+1}=e^{x+C}y+1y−1=ex+C
y−1y+1=Aex\frac{y-1}{y+1}=Ae^{x}y+1y−1=Aex
y−1=A(y+1)exy-1=A(y+1)e^{x}y−1=A(y+1)ex
y(1−Aex)=Aex+1y(1-Ae^{x})=Ae^{x}+1y(1−Aex)=Aex+1
y=1+Aex1−Aexy=\frac{1+Ae^{x}}{1-Ae^{x}}y=1−Aex1+Aex
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments