3. (a) The sales of a small factory since 2008 are as follows: (6)
Year Sales
(in ` lakhs)
2008 8
2009 10
2010 9
2011 11
2012 11
2013 12
Using 2008 as the zero year, find the least-square trend-line equation.
"\\bar{y}=\\dfrac{1}{n}\\displaystyle\\sum_{i=1}^ny_i=\\dfrac{61}{6}"
"SS_{xx}=\\displaystyle\\sum_{i=1}^nx_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nx_i)^2="
"=55-\\dfrac{15^2}{6}=\\dfrac{105}{6}"
"SS_{yy}=\\displaystyle\\sum_{i=1}^ny_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^ny_i)^2="
"=631-\\dfrac{61^2}{6}=\\dfrac{65}{6}"
"SS_{xy}=\\displaystyle\\sum_{i=1}^nx_iy_i-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nx_i)(\\displaystyle\\sum_{i=1}^ny_i)="
"=165-\\dfrac{15(61)}{6}=\\dfrac{75}{6}"
"m=\\dfrac{SS_{xy}}{SS_{xx}}=\\dfrac{\\dfrac{75}{6}}{\\dfrac{105}{6}}=\\dfrac{5}{7}"
"n=\\bar{y}-m\\bar{x}=\\dfrac{61}{6}-\\dfrac{5}{7}(\\dfrac{15}{6})=\\dfrac{176}{21}"
Therefore, we find that the regression equation is:
"Y=8.3810+0.7143X"
Comments
Leave a comment