Question #173548

3. (a) The sales of a small factory since 2008 are as follows: (6)

Year Sales

(in ` lakhs)

2008 8

2009 10

2010 9

2011 11

2012 11

2013 12

Using 2008 as the zero year, find the least-square trend-line equation.


1
Expert's answer
2021-05-02T08:56:06-0400
xˉ=1ni=1nxi=156\bar{x}=\dfrac{1}{n}\displaystyle\sum_{i=1}^nx_i=\dfrac{15}{6}

yˉ=1ni=1nyi=616\bar{y}=\dfrac{1}{n}\displaystyle\sum_{i=1}^ny_i=\dfrac{61}{6}

SSxx=i=1nxi21n(i=1nxi)2=SS_{xx}=\displaystyle\sum_{i=1}^nx_i^2-\dfrac{1}{n}(\displaystyle\sum_{i=1}^nx_i)^2=

=551526=1056=55-\dfrac{15^2}{6}=\dfrac{105}{6}

SSyy=i=1nyi21n(i=1nyi)2=SS_{yy}=\displaystyle\sum_{i=1}^ny_i^2-\dfrac{1}{n}(\displaystyle\sum_{i=1}^ny_i)^2=

=6316126=656=631-\dfrac{61^2}{6}=\dfrac{65}{6}

SSxy=i=1nxiyi1n(i=1nxi)(i=1nyi)=SS_{xy}=\displaystyle\sum_{i=1}^nx_iy_i-\dfrac{1}{n}(\displaystyle\sum_{i=1}^nx_i)(\displaystyle\sum_{i=1}^ny_i)=

=16515(61)6=756=165-\dfrac{15(61)}{6}=\dfrac{75}{6}

m=SSxySSxx=7561056=57m=\dfrac{SS_{xy}}{SS_{xx}}=\dfrac{\dfrac{75}{6}}{\dfrac{105}{6}}=\dfrac{5}{7}

n=yˉmxˉ=61657(156)=17621n=\bar{y}-m\bar{x}=\dfrac{61}{6}-\dfrac{5}{7}(\dfrac{15}{6})=\dfrac{176}{21}

Therefore, we find that the regression equation is:


Y=17621+57XY=\dfrac{176}{21}+\dfrac{5}{7}X

Y=8.3810+0.7143XY=8.3810+0.7143X





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS