Disprove the following statements using counterexample.
1) (π₯ + 4)2 = π₯2 + 16
2) π₯2 > x
3) βπ₯2 = π₯
1) Let x=1x=1x=1
Hence (x+4)2=ΜΈx2+16(x+4)^2\not=x^2+16(x+4)2ξ =x2+16 for x=1x=1x=1
2) Let x=12x=\dfrac{1}{2}x=21β
Hence x2<xx^2<xx2<x for x=12x=\dfrac{1}{2}x=21β
3) Let x=β1x=-1x=β1
Hence x2=ΜΈx\sqrt{x^2}\not=xx2βξ =x for x=β1.x=-1.x=β1.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments