Question #164585

Disprove the following statements using counterexample. 

1) (π‘₯ + 4)2 = π‘₯2 + 16  

2) π‘₯2 > x  

3) βˆšπ‘₯2 = π‘₯  


1
Expert's answer
2021-02-24T07:41:42-0500

1) Let x=1x=1


(x+4)2=(1+4)2=25(x+4)^2=(1+4)^2=25

x2+16=12+16=17x^2+16=1^2+16=17

25=ΜΈ1725\not=17

Hence (x+4)2=ΜΈx2+16(x+4)^2\not=x^2+16 for x=1x=1


2) Let x=12x=\dfrac{1}{2}


x2=(12)2=14<12=xx^2=(\dfrac{1}{2})^2=\dfrac{1}{4}<\dfrac{1}{2}=x

Hence x2<xx^2<x for x=12x=\dfrac{1}{2}


3) Let x=βˆ’1x=-1


x2=(βˆ’1)2=1=1=ΜΈβˆ’1=x\sqrt{x^2}=\sqrt{(-1)^2}=\sqrt{1}=1\not=-1=x

Hence x2=ΜΈx\sqrt{x^2}\not=x for x=βˆ’1.x=-1.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS