Solve the following equation:
x Ix-5I = 20x+3
List the four possible roots in increasing order and indicate if is a EXTRANEOUS root or just a ROOT.
"x\\geq5, |x-5|=x-5"
"x^2-5x-20x-3=0"
"x^2-25x-3=0"
"D=b^2-4ac=(-25)^2-4(1)(-3)=637"
"x_1=\\dfrac{25-\\sqrt{637}}{2(1)}=\\dfrac{25-7\\sqrt{13}}{2}"
"x_2=\\dfrac{25+\\sqrt{637}}{2(1)}=\\dfrac{25+7\\sqrt{13}}{2}"
"x<5, |x-5|=-(x-5)"
"-x(x-5)=20x+3""x^2-5x+20x+3=0"
"x^2+15x+3=0"
"D=b^2-4ac=(15)^2-4(1)(3)=213"
"x_1=\\dfrac{-15-\\sqrt{213}}{2(1)}=\\dfrac{-15-\\sqrt{213}}{2}""x_2=\\dfrac{-15+\\sqrt{213}}{2(1)}=\\dfrac{-15+\\sqrt{213}}{2}"
List the four possible roots in increasing order
"\\dfrac{25-7\\sqrt{13}}{2}, \\dfrac{25+7\\sqrt{13}}{2}"
"x=\\dfrac{-15-\\sqrt{213}}{2}" just root
"x=\\dfrac{-15+\\sqrt{213}}{2}" just root
"x=\\dfrac{25-7\\sqrt{13}}{2}" extraneous root
"x=\\dfrac{25+7\\sqrt{13}}{2}" just root
Comments
Leave a comment