In cartesian coordinates
△ A = △ A x i ⃗ + △ A y j ⃗ + △ A z k ⃗ \vartriangle A=\vartriangle A_x \vec{i}+\vartriangle A_y\vec{j}+\vartriangle A_z\vec{k} △ A = △ A x i + △ A y j + △ A z k
∂ A x ∂ x = z 4 , ∂ 2 A x ∂ x 2 = 0 \dfrac{\partial A_x}{\partial x}=z^4, \ \dfrac{\partial^2 A_x}{\partial x^2}=0 ∂ x ∂ A x = z 4 , ∂ x 2 ∂ 2 A x = 0
∂ A y ∂ y = − 2 x 2 z , ∂ 2 A y ∂ y 2 = 0 \dfrac{\partial A_y}{\partial y}=-2x^2z, \ \dfrac{\partial^2 A_y}{\partial y^2}=0 ∂ y ∂ A y = − 2 x 2 z , ∂ y 2 ∂ 2 A y = 0
∂ A z ∂ z = 6 y z 2 , ∂ 2 A z ∂ z 2 = 12 y z \dfrac{\partial A_z}{\partial z}=6yz^2, \ \dfrac{\partial^2 A_z}{\partial z^2}=12yz ∂ z ∂ A z = 6 y z 2 , ∂ z 2 ∂ 2 A z = 12 yz
△ A = 0 i ⃗ + 0 j ⃗ + 12 y z k ⃗ \vartriangle A=0\vec{i}+0\vec{j}+12yz\vec{k} △ A = 0 i + 0 j + 12 yz k Point ( 1 , − 1 , 1 ) (1,-1,1) ( 1 , − 1 , 1 )
△ A ∣ ( 1 , − 1 , 1 ) = − 12 k ⃗ \vartriangle A|_{(1,-1,1)}=-12\vec{k} △ A ∣ ( 1 , − 1 , 1 ) = − 12 k
Comments
Thanks