Question #161834

If xz⁴i-2ײyzj+2yz³k ,find ∆×A at point (1,-1,1)



1
Expert's answer
2021-02-24T06:41:01-0500

In cartesian coordinates


A=Axi+Ayj+Azk\vartriangle A=\vartriangle A_x \vec{i}+\vartriangle A_y\vec{j}+\vartriangle A_z\vec{k}

Axx=z4, 2Axx2=0\dfrac{\partial A_x}{\partial x}=z^4, \ \dfrac{\partial^2 A_x}{\partial x^2}=0

Ayy=2x2z, 2Ayy2=0\dfrac{\partial A_y}{\partial y}=-2x^2z, \ \dfrac{\partial^2 A_y}{\partial y^2}=0

Azz=6yz2, 2Azz2=12yz\dfrac{\partial A_z}{\partial z}=6yz^2, \ \dfrac{\partial^2 A_z}{\partial z^2}=12yz


A=0i+0j+12yzk\vartriangle A=0\vec{i}+0\vec{j}+12yz\vec{k}

Point (1,1,1)(1,-1,1)


A(1,1,1)=12k\vartriangle A|_{(1,-1,1)}=-12\vec{k}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Izziddin adam
24.02.21, 17:08

Thanks

LATEST TUTORIALS
APPROVED BY CLIENTS