y-intercept: x = 0 x=0 x = 0
y ( 0 ) = ( 0 ) 3 + 6 ( 0 ) 2 + 11 ( 0 ) + 6 = 6 y(0)=(0)^3+6(0)^2+11(0)+6=6 y ( 0 ) = ( 0 ) 3 + 6 ( 0 ) 2 + 11 ( 0 ) + 6 = 6 Point (0,6)
x-intercepts: y = 0 y=0 y = 0
x 3 + 6 x 2 + 11 x + 6 = 0 x^3+6x^2+11x+6=0 x 3 + 6 x 2 + 11 x + 6 = 0
x 3 + x 2 + 5 x 2 + 11 x + 6 = 0 x^3+x^2+5x^2+11x+6=0 x 3 + x 2 + 5 x 2 + 11 x + 6 = 0
x 2 ( x + 1 ) + ( x + 1 ) ( 5 x + 6 ) = 0 x^2(x+1)+(x+1)(5x+6)=0 x 2 ( x + 1 ) + ( x + 1 ) ( 5 x + 6 ) = 0
( x + 1 ) ( x 2 + 5 x + 6 ) = 0 (x+1)(x^2+5x+6)=0 ( x + 1 ) ( x 2 + 5 x + 6 ) = 0
( x + 1 ) ( x + 2 ) ( x + 3 ) = 0 (x+1)(x+2)(x+3)=0 ( x + 1 ) ( x + 2 ) ( x + 3 ) = 0
x 1 = − 3 , x 2 = − 2 , x 1 = − 1 x_1=-3, x_2=-2, x_1=-1 x 1 = − 3 , x 2 = − 2 , x 1 = − 1 There are 3 zeros.
Point (-3,0), point(-2, 0), and point(-1, 0).
y ′ = 3 x 2 + 12 x + 11 y'=3x^2+12x+11 y ′ = 3 x 2 + 12 x + 11
y ′ = 0 : 3 x 2 + 12 x + 11 = 0 y'=0:3x^2+12x+11=0 y ′ = 0 : 3 x 2 + 12 x + 11 = 0 D = ( 12 ) 2 − 4 ( 3 ) ( 11 ) = 12 D=(12)^2-4(3)(11)=12 D = ( 12 ) 2 − 4 ( 3 ) ( 11 ) = 12
x 1 = − 12 − 12 2 ( 3 ) = − 2 − 3 3 x_1=\dfrac{-12-\sqrt{12}}{2(3)}=-2-\dfrac{\sqrt{3}}{3} x 1 = 2 ( 3 ) − 12 − 12 = − 2 − 3 3
x 2 = − 12 + 12 2 ( 3 ) = − 2 + 3 3 x_2=\dfrac{-12+\sqrt{12}}{2(3)}=-2+\dfrac{\sqrt{3}}{3} x 2 = 2 ( 3 ) − 12 + 12 = − 2 + 3 3
There are 2 turning points.
x < − 2 − 3 3 , y ′ > 0 , y i n c r e a s e s x<-2-\dfrac{\sqrt{3}}{3}, y'>0, y\ increases x < − 2 − 3 3 , y ′ > 0 , y in cre a ses
− 2 − 3 3 < x < − 2 + 3 3 , y ′ < 0 , y d e c r e a s e s -2-\dfrac{\sqrt{3}}{3}<x<-2+\dfrac{\sqrt{3}}{3}, y'<0, y\ decreases − 2 − 3 3 < x < − 2 + 3 3 , y ′ < 0 , y d ecre a ses
x > − 2 + 3 3 , y ′ > 0 , y i n c r e a s e s x>-2+\dfrac{\sqrt{3}}{3}, y'>0, y\ increases x > − 2 + 3 3 , y ′ > 0 , y in cre a ses
The function has a local maximum at x = − 2 − 3 3 . x=-2-\dfrac{\sqrt{3}}{3}. x = − 2 − 3 3 .
The function has a local minimum at x = − 2 + 3 3 . x=-2+\dfrac{\sqrt{3}}{3}. x = − 2 + 3 3 .
Sketch the graph
Comments