Question #158699

Determine the y-intercept, the zeros, the number of turning points, and the behavior of the graph and sketch the graph of the following polynomial functions.


1. P(x) = x3 + 6x2 + 11x + 6


1
Expert's answer
2021-02-01T08:25:33-0500

y-intercept: x=0x=0


y(0)=(0)3+6(0)2+11(0)+6=6y(0)=(0)^3+6(0)^2+11(0)+6=6

Point (0,6)

x-intercepts: y=0y=0


x3+6x2+11x+6=0x^3+6x^2+11x+6=0

x3+x2+5x2+11x+6=0x^3+x^2+5x^2+11x+6=0

x2(x+1)+(x+1)(5x+6)=0x^2(x+1)+(x+1)(5x+6)=0

(x+1)(x2+5x+6)=0(x+1)(x^2+5x+6)=0

(x+1)(x+2)(x+3)=0(x+1)(x+2)(x+3)=0

x1=3,x2=2,x1=1x_1=-3, x_2=-2, x_1=-1

There are 3 zeros.

Point (-3,0), point(-2, 0), and point(-1, 0).


y=3x2+12x+11y'=3x^2+12x+11

y=0:3x2+12x+11=0y'=0:3x^2+12x+11=0

D=(12)24(3)(11)=12D=(12)^2-4(3)(11)=12

x1=12122(3)=233x_1=\dfrac{-12-\sqrt{12}}{2(3)}=-2-\dfrac{\sqrt{3}}{3}

x2=12+122(3)=2+33x_2=\dfrac{-12+\sqrt{12}}{2(3)}=-2+\dfrac{\sqrt{3}}{3}

There are 2 turning points.

x<233,y>0,y increasesx<-2-\dfrac{\sqrt{3}}{3}, y'>0, y\ increases

233<x<2+33,y<0,y decreases-2-\dfrac{\sqrt{3}}{3}<x<-2+\dfrac{\sqrt{3}}{3}, y'<0, y\ decreases

x>2+33,y>0,y increasesx>-2+\dfrac{\sqrt{3}}{3}, y'>0, y\ increases

The function has a local maximum at x=233.x=-2-\dfrac{\sqrt{3}}{3}.

The function has a local minimum at x=2+33.x=-2+\dfrac{\sqrt{3}}{3}.

Sketch the graph





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS