Determine the y-intercept, the zeros, the number of turning points, and the behavior of the graph and sketch the graph of the following polynomial functions.
1. P(x) = x3 + 6x2 + 11x + 6
y-intercept: "x=0"
Point (0,6)
x-intercepts: "y=0"
"x^3+x^2+5x^2+11x+6=0"
"x^2(x+1)+(x+1)(5x+6)=0"
"(x+1)(x^2+5x+6)=0"
"(x+1)(x+2)(x+3)=0"
"x_1=-3, x_2=-2, x_1=-1"
There are 3 zeros.
Point (-3,0), point(-2, 0), and point(-1, 0).
"y'=0:3x^2+12x+11=0"
"D=(12)^2-4(3)(11)=12"
"x_1=\\dfrac{-12-\\sqrt{12}}{2(3)}=-2-\\dfrac{\\sqrt{3}}{3}"
"x_2=\\dfrac{-12+\\sqrt{12}}{2(3)}=-2+\\dfrac{\\sqrt{3}}{3}"
There are 2 turning points.
"x<-2-\\dfrac{\\sqrt{3}}{3}, y'>0, y\\ increases"
"-2-\\dfrac{\\sqrt{3}}{3}<x<-2+\\dfrac{\\sqrt{3}}{3}, y'<0, y\\ decreases"
"x>-2+\\dfrac{\\sqrt{3}}{3}, y'>0, y\\ increases"
The function has a local maximum at "x=-2-\\dfrac{\\sqrt{3}}{3}."
The function has a local minimum at "x=-2+\\dfrac{\\sqrt{3}}{3}."
Sketch the graph
Comments
Leave a comment