(i) Two vectors are said to be perpendicular if their dot product is zero.
"a \\cdot b=(3i+4j) \\cdot(-4i+3j)=-12+12=0\\\\\na \\cdot c=(3i+4j) \\cdot(-3i+4j)=-9+16=7"
Since "a \\cdot b=0", this implies that "b" is the vector perpendicular to "a" \\
(ii) The initial velocity "u" of "S" is "(5xi+10xj)".
The component of the initial velocity of "S" parallel to "a" is "\\frac{\\overrightarrow{u}\\cdot a}{|a|}"
"\\frac{(5xi+10xj).(3i+4j)}{\\sqrt{3^2+4^2}}=\\frac{15x+40x}{5}=\\frac{55x}{5}=11x"
(iii) We need to compute the final velocity of "S".
"m_1u_1+m_2u_2=m_1v_1+m_2v_2\\\\\nm(5xi+10xj+0)=m(v_1+v_2)\\\\\n5xi+10xj=v_1+v_2................................(1)\\\\"
The coefficient of restitution "e" ="-\\frac{v_2-v_1}{u_2-u_1}"
"\\frac{1}{2}=-\\frac{v_2-v_1}{0-(5xi+10xj)}\\\\\n\\frac{1}{2}(5xi+10xj)=v_2-v_1...........................(2)"
Add (1) and (2) together
"2v_2=\\frac{15x}{2}i+15xj\\\\\nv_2=\\frac{15x}{4}i+\\frac{15x}{2}j"
Substitute this into (1)
"v_1=5xi+10xj-(\\frac{15x}{4}i+\\frac{15x}{2}j)\\\\\nv_1=\\frac{5x}{4}i+\\frac{5x}{2}j"
The final velocity "v_1" of "S" is "\\frac{5x}{4}i+\\frac{5x}{2}j"
"\\frac{v_1 \\cdot a}{|a|}=\\frac{(\\frac{5x}{4}i+\\frac{5x}{2}j)\\cdot (3i+4j)}{5}=\\frac{\\frac{55x}{4}}{5}=\\frac{11x}{4}"
(iv) The impulse exerted by "T" on "S" is "m(v_2-u_2)"
"=m(\\frac{15x}{4}i+\\frac{15x}{2}j-0)\\\\\n=m(\\frac{15x}{4}i+\\frac{15x}{2})"
Magnitude="\\sqrt{m^2[(\\frac{15x}{4})^2+(\\frac{15x}{2})^2]}"
"=m\\sqrt{\\frac{1125x^2}{16}}=\\frac{15\\sqrt{5}mx}{4}"
Comments
Leave a comment