Answer to Question #155340 in Math for .

Question #155340

a) given the parabola (y+2)²=-8(x + 1), sketch the graph and determine the vertex , focus and directrix line of the parabola .


b)sketch the graph of f(x)=-(|x - 1| - 3) by using transformation technique . begin with f(x).


c)graph the system inequality below and shade the feasible region .

: 3y < 15 - 2x

: y(less and equal than) x + 2

: y < 2

: y is (greater and equal than) 0



1
Expert's answer
2021-01-14T16:27:55-0500

a) (y+2)2=8(x+1)(y+2)^2=-8(x+1)

h=1,k=2,p=2h=-1, k=-2, p=-2

Vertex:(h,k)=(1,2)Vertex: (h, k)=(-1, -2)

Focus:(h+p,k)=(3,2)Focus: (h+p, k)=(-3, -2)

Directrix:x=hp,x=1Directrix: x=h-p, x=1



b)

1. Begin by graphing f1(x)=xf_1(x)=|x| - black graph.

2. Shift left by 1: f2(x)=x1f_2(x)=|x-1| - blue graph.

3. Shift down by 3: f3(x)=x13f_3(x)=|x-1|-3 - green graph.

4. Flip over the xx -axis: f(x)=(x13)f(x)=-(|x-1|-3) - red graph.



c)


3y<152x=>y<23x+53y<15-2x=>y<-\dfrac{2}{3}x+5


yx+2y\leq x+2




y<2y<2

y0y\geq0

c)graph the system inequality below and shade the feasible region .

: 3y < 15 - 2x

: y(less and equal than) x + 2

: y < 2

: y is (greater and equal than) 0


y=0:0=152x=>x=152y=0: 0=15-2x=>x=\dfrac{15}{2}

Point(152,0)Point (\dfrac{15}{2}, 0)


y=2:3(2)=152x=>x=92y=2: 3(2)=15-2x=>x=\dfrac{9}{2}

Point(92,2)Point (\dfrac{9}{2}, 2)


y=0:0=x+2=>x=2y=0: 0=x+2=>x=-2

Point(2,0)Point(-2,0)


y=2:2=x+2=>x=0y=2: 2=x+2=>x=0

Point(0,2)Point(0,2)







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment