solve the D.E. y(n)-y(n-2)+y(n-3)=delta (n)
"y[n]-y[n-2]+y[n-3]=\\delta[n]"
For, "x[n]=u[n]" ,
"D(z)=1-z^{-2}+z^{-3}=0\\\\\n\\Rightarrow z^3-z+1=0\\\\\n\\Rightarrow (z+1.32472)(z-0.66236 - 0.56228i)(z-0.66236 +0.56228i)=0\\\\\n\\Rightarrow z=0.66236 - 0.56228i=z_3 \\;\\;or,\\;\\; 0.66236 + 0.56228i=z_2\\\\\\;\\;or,\\;\\; 1.32472=z_1[let]"
"\\therefore" The solution :-
Where,
"z_1=1.32472\\\\\nz_2=z_3=0.66236+0.56228i\\\\z_3=0.66236-0.56228i"
Comments
Leave a comment