y[n]−y[n−2]+y[n−3]=δ[n]
For, x[n]=u[n] ,
D(z)=1−z−2+z−3=0⇒z3−z+1=0⇒(z+1.32472)(z−0.66236−0.56228i)(z−0.66236+0.56228i)=0⇒z=0.66236−0.56228i=z3or,0.66236+0.56228i=z2or,1.32472=z1[let]
∴ The solution :-
y[n]={c1z1n+c2z2n+c3z3n+nc1z1n+nc2z2n+nc3z3n+1)u[n]
Where,
z1=1.32472z2=z3=0.66236+0.56228iz3=0.66236−0.56228i
Comments