Question #153447

Values of f(x) for values of x are given as

f(1) = 4, f(2) = 5, f(7) = 5, f(8) = 4

Find f(6) and also the value of x for which f(x) is maximum or minimum.


1
Expert's answer
2021-01-03T15:59:14-0500

Here the intervals are unequal.


x0=1,x1=2,x2=7,x3=8y0=4,y1=5,y2=5,y3=4\begin{matrix} x_0=1, & x_1=2, & x_2=7, & x_3=8 \\ y_0=4, & y_1=5, & y_2=5, & y_3=4 \end{matrix}


By Lagrange’s interpolation formula we have

y=f(x)=(xx1)(xx2)(xx3)(x0x1)(x0x2)(x0x3)×y0y=f(x)=\dfrac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}\times y_0

+(xx0)(xx2)(xx3)(x1x0)(x1x2)(x1x3)×y1+\dfrac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}\times y_1

+(xx0)(xx1)(xx3)(x2x0)(x2x1)(x2x3)×y2+\dfrac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}\times y_2

+(xx0)(xx1)(xx2)(x3x0)(x3x1)(x3x2)×y3+\dfrac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}\times y_3



Put x=6x=6

f(6)=(62)(67)(68)(12)(17)(18)×4f(6)=\dfrac{(6-2)(6-7)(6-8)}{(1-2)(1-7)(1-8)}\times 4

+(61)(67)(68)(21)(27)(28)×5+\dfrac{(6-1)(6-7)(6-8)}{(2-1)(2-7)(2-8)}\times 5

+(61)(62)(68)(71)(72)(78)×5+\dfrac{(6-1)(6-2)(6-8)}{(7-1)(7-2)(7-8)}\times5

+(61)(62)(67)(81)(82)(87)×4+\dfrac{(6-1)(6-2)(6-7)}{(8-1)(8-2)(8-7)}\times 4

=173=\dfrac{17}{3}

f(6)=173f(6)=\dfrac{17}{3}

Let f(x)=ax2+bc+cf(x)=ax^2+bc+c


a+b+c=44a+2b+c=549a+7b+c=564a+8b+c=4\begin{alignedat}{2} a+b+c= 4 \\ 4a+2b+c=5 \\ 49a+7b+c=5 \\ 64a+8b+c=4 \end{alignedat}

a+b+c=43a+b=115a+b=164a+8b+c=4\begin{alignedat}{2} a+b+c= 4 \\ 3a+b=1 \\ 15a+b=-1 \\ 64a+8b+c=4 \end{alignedat}

a=16,b=32,c=83a=-\dfrac{1}{6}, b=\dfrac{3}{2}, c=\dfrac{8}{3}


f(x)=16x2+32x+83f(x)=-\dfrac{1}{6}x^2+\dfrac{3}{2}x+\dfrac{8}{3}

xv=322(16)=92x_v=-\dfrac{\dfrac{3}{2}}{2(-\dfrac{1}{6})}=\dfrac{9}{2}

yv=f(92)=16(92)2+32(92)+83=14524y_v=f(\dfrac{9}{2})=-\dfrac{1}{6}(\dfrac{9}{2})^2+\dfrac{3}{2}(\dfrac{9}{2})+\dfrac{8}{3}=\dfrac{145}{24}


f(x) is maximum at x=92x=\dfrac{9}{2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS