Here the intervals are unequal.
x0=1,y0=4,x1=2,y1=5,x2=7,y2=5,x3=8y3=4
By Lagrange’s interpolation formula we have
y=f(x)=(x0−x1)(x0−x2)(x0−x3)(x−x1)(x−x2)(x−x3)×y0
+(x1−x0)(x1−x2)(x1−x3)(x−x0)(x−x2)(x−x3)×y1
+(x2−x0)(x2−x1)(x2−x3)(x−x0)(x−x1)(x−x3)×y2
+(x3−x0)(x3−x1)(x3−x2)(x−x0)(x−x1)(x−x2)×y3
Put x=6
f(6)=(1−2)(1−7)(1−8)(6−2)(6−7)(6−8)×4
+(2−1)(2−7)(2−8)(6−1)(6−7)(6−8)×5
+(7−1)(7−2)(7−8)(6−1)(6−2)(6−8)×5
+(8−1)(8−2)(8−7)(6−1)(6−2)(6−7)×4
=317 f(6)=317
Let f(x)=ax2+bc+c
a+b+c=44a+2b+c=549a+7b+c=564a+8b+c=4
a+b+c=43a+b=115a+b=−164a+8b+c=4 a=−61,b=23,c=38
f(x)=−61x2+23x+38 xv=−2(−61)23=29
yv=f(29)=−61(29)2+23(29)+38=24145
f(x) is maximum at x=29
Comments