Question #150265
The function f(x;y), defined on pairs of real numbers, satisfies the conditions f(a;a) = 0, f(a; f(b;c)) = f(a;b)+c for any a, b, c. Find f(3.5 ; 7).
1
Expert's answer
2020-12-14T10:31:05-0500

Let f(a,a)=0f(a,a)=0 be the condition (1) and f(a,f(b,c))=f(a,b)+cf(a,f(b,c))=f(a,b)+c be the condition (2).

We have

f(a,b)+b=f(a,f(b,b))=f(a,0)=f(a,f(a,a))=f(a,a)+a=af(a,b)+b=f(a,f(b,b))=f(a,0)=f(a,f(a,a))=f(a,a)+a=a, that is f(a,b)=abf(a,b)=a-b

So we obtain that if ff satisfies the conditions (1) and (2), then f(a,b)f(a,b) can be only aba-b

Check whether f(a,b)=abf(a,b)=a-b satisfies the conditions (1) and (2).

We have f(a,a)=aa=0f(a,a)=a-a=0, so f(a,b)=abf(a,b)=a-b satisfies the condition (1).

Next, f(a,f(b,c))=f(a,bc)=a(bc)=(ab)+c=f(a,b)+cf(a,f(b,c))=f(a,b-c)=a-(b-c)=(a-b)+c=f(a,b)+c, so f(a,b)=abf(a,b)=a-b satisfies the condition (2).


We obtain that ff satisfies the conditions (1) and (2) if and only if f(a,b)=abf(a,b)=a-b, then f(3.5;7)=3.57=3.5f(3.5;7)=3.5-7=-3.5

Answer: 3.5-3.5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS