Let f(a,a)=0 be the condition (1) and f(a,f(b,c))=f(a,b)+c be the condition (2).
We have
f(a,b)+b=f(a,f(b,b))=f(a,0)=f(a,f(a,a))=f(a,a)+a=a, that is f(a,b)=a−b
So we obtain that if f satisfies the conditions (1) and (2), then f(a,b) can be only a−b
Check whether f(a,b)=a−b satisfies the conditions (1) and (2).
We have f(a,a)=a−a=0, so f(a,b)=a−b satisfies the condition (1).
Next, f(a,f(b,c))=f(a,b−c)=a−(b−c)=(a−b)+c=f(a,b)+c, so f(a,b)=a−b satisfies the condition (2).
We obtain that f satisfies the conditions (1) and (2) if and only if f(a,b)=a−b, then f(3.5;7)=3.5−7=−3.5
Answer: −3.5
Comments