The diagonal d d d of the cube with the side a a a is
d 2 = a 2 + a 2 + a 2 = 3 a 2 d^2=a^2+a^2+a^2=3a^2 d 2 = a 2 + a 2 + a 2 = 3 a 2
d = 3 a d=\sqrt{3}a d = 3 a Given d = 20 3 c m . d=20\sqrt{3}\ cm. d = 20 3 c m .
Then
a = d 3 = 20 3 3 = 20 ( c m ) a=\dfrac{d}{\sqrt{3}}=\dfrac{20\sqrt{3}}{\sqrt{3}}=20(cm) a = 3 d = 3 20 3 = 20 ( c m ) The radius r r r of the circle inscribed in the square with the side a a a is
r = a 2 r=\dfrac{a}{2} r = 2 a Then we have the right circular cone inscribed in a cube with the side a a a
r a d i u s = r = a 2 , h e i g h t = h = a radius=r=\dfrac{a}{2}, \ height=h=a r a d i u s = r = 2 a , h e i g h t = h = a The volume of the cone is
V c o n e = 1 3 π r 2 h = 1 3 π ( a 2 ) 2 ( a ) = π a 3 12 V_{cone}=\dfrac{1}{3}\pi r^2h=\dfrac{1}{3}\pi (\dfrac{a}{2})^2 (a)=\dfrac{\pi a^3}{12} V co n e = 3 1 π r 2 h = 3 1 π ( 2 a ) 2 ( a ) = 12 π a 3
V c o n e = π ( 20 ) 3 12 = 100 π 3 ( c m 3 ) V_{cone}=\dfrac{\pi(20)^3}{12}=\dfrac{100\pi}{3}(cm^3) V co n e = 12 π ( 20 ) 3 = 3 100 π ( c m 3 )
≈ 104.720 ( c m 3 ) \approx104.720(cm^3) ≈ 104.720 ( c m 3 ) The volume of the cone is
100 π 3 c m 3 ≈ 104.720 c m 3 . \dfrac{100\pi}{3}\ cm^3\approx 104.720 \ cm^3. 3 100 π c m 3 ≈ 104.720 c m 3 .
Comments