a. Let X= the number of substandard pieces among 6 taken pieces.
P(X=x)=(618)(x4)(6−x18−4)
(618)=6!(18−6)!18!=18564 P(X=0)=18564(04)(614)=185643003=6811
P(X=1)=18564(14)(514)=185648008=5122
P(X=2)=18564(24)(414)=185646006=3411
P(X=3)=18564(34)(314)=185641456=514
P(X=4)=18564(44)(214)=1856491=2041
6811+5122+3411+514+2041=1
xp(x)068111512223411351442041 b,
E(X)=0⋅6811+1⋅5122+2⋅3411+3⋅514+
+4⋅2041=34
E(X2)=0⋅6811+12⋅5122+22⋅3411+32⋅514+
+42⋅2041=51128
Var(X)=E(X2)−(E(X))2=
=51128−(34)2=153112
c,
P(X<3)=P(X=0)+P(X=1)+P(X=2)=
6811+5122+3411=1211 P(X<3)=1211
d.
P(accept)=P(X=0)=6811
Comments