a. Let X= the number of substandard pieces among 6 taken pieces.
P(X=x)=(618​)(x4​)(6−x18−4​)​
(618​)=6!(18−6)!18!​=18564 P(X=0)=18564(04​)(614​)​=185643003​=6811​
P(X=1)=18564(14​)(514​)​=185648008​=5122​
P(X=2)=18564(24​)(414​)​=185646006​=3411​
P(X=3)=18564(34​)(314​)​=185641456​=514​
P(X=4)=18564(44​)(214​)​=1856491​=2041​
6811​+5122​+3411​+514​+2041​=1
xp(x)​06811​​15122​​23411​​3514​​42041​​ b,
E(X)=0⋅6811​+1⋅5122​+2⋅3411​+3⋅514​+
+4⋅2041​=34​
E(X2)=0⋅6811​+12⋅5122​+22⋅3411​+32⋅514​+
+42⋅2041​=51128​
Var(X)=E(X2)−(E(X))2=
=51128​−(34​)2=153112​
c,
P(X<3)=P(X=0)+P(X=1)+P(X=2)=
6811​+5122​+3411​=1211​ P(X<3)=1211​
d.
P(accept)=P(X=0)=6811​
Comments