Let
A=⎣⎡112121211⎦⎤
A−λI=⎣⎡1−λ1212−λ1211−λ⎦⎤
det(A−λI)=∣∣1−λ1212−λ1211−λ∣∣=
=(1−λ)∣∣2−λ111−λ∣∣−(1)∣∣1211−λ∣∣+(2)∣∣122−λ1∣∣=
=(1−λ)(2−2λ−λ+λ2−1)−(1−λ−2)+
+2(1−4+2λ)=1−3λ+λ2−λ+3λ2−λ3+5λ−5=
=−λ3+4λ2+λ−4This is a characteristic polynomial.
Solve det(A−λI)=0
−λ3+4λ2+λ−4=0−λ2(λ−4)+(λ−4)=0(λ−4)(1−λ)(1+λ)=0The roots are: λ1=4,λ2=1,λ3=−1.
These are the eigenvalues.
Find the eigenvectors.
λ=4
⎣⎡1−λ1212−λ1211−λ⎦⎤=⎣⎡−3121−2121−3⎦⎤ Perform row operations to obtain the rref of the matrix:
R2=R2+(1/3)R1
⎣⎡−3021−5/3125/3−3⎦⎤ R3=R3+(2/3)R1
⎣⎡−3001−5/35/325/3−5/3⎦⎤ R3=R3+R2
⎣⎡−3001−5/3025/30⎦⎤ R2=(−3/5)R2
⎣⎡−3001102−10⎦⎤ R1=R1−R2
⎣⎡−3000103−10⎦⎤ R1=(−1/3)R1
⎣⎡100010−1−10⎦⎤ Now, solve the matrix equation
⎣⎡100010−1−10⎦⎤⎣⎡v1v2v3⎦⎤=⎣⎡000⎦⎤If we take v3=t, then v1=t,v2=t,v3=t.
Therefore
v=⎣⎡ttt⎦⎤=⎣⎡111⎦⎤t λ=1
⎣⎡1−λ1212−λ1211−λ⎦⎤=⎣⎡012111210⎦⎤Perform row operations to obtain the rref of the matrix:
Swap rows 1 and 2
⎣⎡102111120⎦⎤ R3=R3−(2)R1
⎣⎡10011−112−2⎦⎤ R3=R3+R2
⎣⎡100110120⎦⎤ R1=R1−R2
⎣⎡100010−120⎦⎤Now, solve the matrix equation
⎣⎡100010−120⎦⎤⎣⎡u1u2u3⎦⎤=⎣⎡000⎦⎤ If we take u3=t, then u1=t,u2=−2t,u3=t.
Therefore
u=⎣⎡t−2tt⎦⎤=⎣⎡1−21⎦⎤t λ=−1
⎣⎡1−λ1212−λ1211−λ⎦⎤=⎣⎡212131212⎦⎤Perform row operations to obtain the rref of the matrix:
R3=R3−R1
⎣⎡210130210⎦⎤ R2=R2−(1/2)R1
⎣⎡20015/20200⎦⎤ R2=(2/5)R2
⎣⎡200110200⎦⎤ R1=R1−R2
⎣⎡200010200⎦⎤ R1=(1/2)R1
⎣⎡100010100⎦⎤ Now, solve the matrix equation
⎣⎡100010100⎦⎤⎣⎡w1w2w3⎦⎤=⎣⎡000⎦⎤ If we take w3=t, then w1=−t,w2=0,w3=t.
Therefore
w=⎣⎡−t0t⎦⎤=⎣⎡−101⎦⎤tEigen value: 4, eigenvector:⎣⎡1/31/31/3⎦⎤
Eigen value: 1, eigenvector: ⎣⎡1/6−2/61/6⎦⎤
Figenvalue: −1, eigenvector: ⎣⎡−1/201/2⎦⎤
Comments