Question #115049
[img]https://upload.cc/i1/2020/05/09/F5HN90.jpg[/img]


question in photo
1
Expert's answer
2020-05-11T18:15:21-0400

Let


A=[112121211]A=\begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}


AλI=[1λ1212λ1211λ]A-\lambda I=\begin{bmatrix} 1-\lambda & 1 & 2 \\ 1 & 2-\lambda & 1 \\ 2 & 1 & 1-\lambda \end{bmatrix}

det(AλI)=1λ1212λ1211λ=det(A-\lambda I)=\begin{vmatrix} 1-\lambda & 1 & 2 \\ 1 & 2-\lambda & 1 \\ 2 & 1 & 1-\lambda \end{vmatrix}=

=(1λ)2λ111λ(1)1121λ+(2)12λ21== (1-\lambda)\begin{vmatrix} 2-\lambda & 1 \\ 1 & 1-\lambda \end{vmatrix}-(1)\begin{vmatrix} 1 & 1 \\ 2 & 1-\lambda \end{vmatrix}+(2)\begin{vmatrix} 1 & 2-\lambda \\ 2 & 1 \end{vmatrix}=

=(1λ)(22λλ+λ21)(1λ2)+=(1-\lambda)(2-2\lambda-\lambda+\lambda^2-1)-(1-\lambda-2)+

+2(14+2λ)=13λ+λ2λ+3λ2λ3+5λ5=+2(1-4+2\lambda)=1-3\lambda+\lambda^2-\lambda+3\lambda^2-\lambda^3+5\lambda-5=

=λ3+4λ2+λ4=-\lambda^3+4\lambda^2+\lambda-4

This is a characteristic polynomial.

Solve det(AλI)=0det(A-\lambda I)=0


λ3+4λ2+λ4=0-\lambda^3+4\lambda^2+\lambda-4=0λ2(λ4)+(λ4)=0-\lambda^2(\lambda-4)+(\lambda-4)=0(λ4)(1λ)(1+λ)=0(\lambda-4)(1-\lambda)(1+\lambda)=0

The roots are: λ1=4,λ2=1,λ3=1.\lambda_1=4,\lambda_2=1,\lambda_3=-1.

These are the eigenvalues.

Find the eigenvectors.

λ=4\lambda=4


[1λ1212λ1211λ]=[312121213]\begin{bmatrix} 1-\lambda & 1 & 2 \\ 1 & 2-\lambda & 1 \\ 2 & 1 & 1-\lambda \end{bmatrix}=\begin{bmatrix} -3 & 1 & 2 \\ 1 & -2 & 1 \\ 2 & 1 & -3 \end{bmatrix}

Perform row operations to obtain the rref of the matrix:

R2=R2+(1/3)R1R_2=R_2+(1/3)R_1


[31205/35/3213]\begin{bmatrix} -3 & 1 & 2 \\ 0 & -5/3 & 5/3 \\ 2 & 1 & -3 \end{bmatrix}

R3=R3+(2/3)R1R_3=R_3+(2/3)R_1


[31205/35/305/35/3]\begin{bmatrix} -3 & 1 & 2 \\ 0 & -5/3 & 5/3 \\ 0 & 5/3 & -5/3 \end{bmatrix}

R3=R3+R2R_3=R_3+R_2


[31205/35/3000]\begin{bmatrix} -3 & 1 & 2 \\ 0 & -5/3 & 5/3 \\ 0 & 0 & 0 \end{bmatrix}

R2=(3/5)R2R_2=(-3/5)R_2


[312011000]\begin{bmatrix} -3 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}

R1=R1R2R_1=R_1-R_2


[303011000]\begin{bmatrix} -3 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}

R1=(1/3)R1R_1=(-1/3)R_1


[101011000]\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}

Now, solve the matrix equation


[101011000][v1v2v3]=[000]\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

If we take v3=t,v_3=t, then v1=t,v2=t,v3=t.v_1=t, v_2=t,v_3=t.

Therefore


v=[ttt]=[111]t\mathbf {v}=\begin{bmatrix} t \\ t \\ t \end{bmatrix}=\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}t

λ=1\lambda=1


[1λ1212λ1211λ]=[012111210]\begin{bmatrix} 1-\lambda & 1 & 2 \\ 1 & 2-\lambda & 1 \\ 2 & 1 & 1-\lambda \end{bmatrix}=\begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix}

Perform row operations to obtain the rref of the matrix:

Swap rows 1 and 2

[111012210]\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{bmatrix}

R3=R3(2)R1R_3=R_3-(2)R_1


[111012012]\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & -1 & -2 \end{bmatrix}

R3=R3+R2R_3=R_3+R_2


[111012000]\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}

R1=R1R2R_1=R_1-R_2


[101012000]\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}

Now, solve the matrix equation


[101012000][u1u2u3]=[000]\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

If we take u3=t,u_3=t, then u1=t,u2=2t,u3=t.u_1=t, u_2=-2t,u_3=t.

Therefore


u=[t2tt]=[121]t\mathbf {u}=\begin{bmatrix} t \\ -2t \\ t \end{bmatrix}=\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}t

λ=1\lambda=-1


[1λ1212λ1211λ]=[212131212]\begin{bmatrix} 1-\lambda & 1 & 2 \\ 1 & 2-\lambda & 1 \\ 2 & 1 & 1-\lambda \end{bmatrix}=\begin{bmatrix} 2 & 1 & 2 \\ 1 & 3 & 1 \\ 2 & 1 & 2 \end{bmatrix}

Perform row operations to obtain the rref of the matrix:

R3=R3R1R_3=R_3-R_1


[212131000]\begin{bmatrix} 2 & 1 & 2 \\ 1 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix}

R2=R2(1/2)R1R_2=R_2-(1/2)R_1


[21205/20000]\begin{bmatrix} 2 & 1 & 2 \\ 0 & 5/2 & 0 \\ 0 & 0 & 0 \end{bmatrix}

R2=(2/5)R2R_2=(2/5)R_2


[212010000]\begin{bmatrix} 2 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}

R1=R1R2R_1=R_1-R_2


[202010000]\begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}

R1=(1/2)R1R_1=(1/2)R_1


[101010000]\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}

Now, solve the matrix equation


[101010000][w1w2w3]=[000]\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

If we take w3=t,w_3=t, then w1=t,w2=0,w3=t.w_1=-t, w_2=0, w_3=t.

Therefore


w=[t0t]=[101]t\mathbf {w}=\begin{bmatrix} -t \\ 0 \\ t \end{bmatrix}=\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}t

Eigen value: 4,4, eigenvector:[1/31/31/3]\begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}


Eigen value: 1,1, eigenvector: [1/62/61/6]\begin{bmatrix} 1/\sqrt{6} \\ -2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}


Figenvalue: 1,-1, eigenvector: [1/201/2]\begin{bmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS