Convert the following linear programming problem into dual
problem.
Maximise
Z = 22x1 + 25x2 +19x3
Subject to:
18x1 + 26x2 + 22x3 ≤ 350
14x1 + 18x2 + 20x3 ≥180
17x1 + 19x2 + 18x3 = 205
x1, x2, x3 ≥ 0
All ≥ constraints can be converted to ≤ type by multiplying both sides by -1
 MAX Zx= 22x1+25x2+19x3
subject to
18x1+26x2+22x3≤350
-14x1-18x2-20x3≤-180
17x1+19x2+18x3=205
and x1,x2,x3≥0;
Since 3rd constraint in the primal is equality, the corresponding dual variable y3 will be unrestricted in sign.
Dual is (Solution steps of Dual by BigM method)
MIN Zy=350y1-180y2+205y3
subject to
18y1-14y2+17y3≥22
26y1-18y2+19y3≥25
22y1-20y2+18y3≥19
and y1,y2≥0;y3 unrestricted in sign
Comments
Leave a comment