Question #291597

 Solve the following LPP:  

Minimize Z= 120x1+60x2 


Subject to:  

20x1+30x2>= 900  

40x1+30x2>=1200  

x1,x2>=0


1
Expert's answer
2022-01-31T12:09:42-0500

Solution:

Minimize Z=120x1+60x2Z= 120x_1+60x_2

Subject to:  

20x1+30x290040x1+30x21200x1,x2020x_1+30x_2\ge 900 \\40x_1+30x_2\ge1200 \\x_1,x_2\ge0



A(0,40), B(15,20), C(45,0) are corner points.

At A(0,40) , Z=120x1+60x2=120(0)+60(40)=2400Z= 120x_1+60x_2 =120(0)+60(40)=2400 (Minimum)

At B(15,20),Z=120x1+60x2=120(15)+60(20)=3000Z= 120x_1+60x_2 =120(15)+60(20)=3000

At C(45,0),Z=120x1+60x2=120(45)+60(0)=5400Z= 120x_1+60x_2 =120(45)+60(0)=5400

Thus, minimum is 2400 at x1=0,x2=40x_1=0, x_2=40


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS