Solve the following LPP:
Minimize Z= 120x1+60x2
Subject to:
20x1+30x2>= 900
40x1+30x2>=1200
x1,x2>=0
Minimize "Z= 120x_1+60x_2"
Subject to:
"20x_1+30x_2\\ge 900 \n\n\\\\40x_1+30x_2\\ge1200 \n\n\\\\x_1,x_2\\ge0"
A(0,40), B(15,20), C(45,0) are corner points.
At A(0,40) , "Z= 120x_1+60x_2 =120(0)+60(40)=2400" (Minimum)
At B(15,20),"Z= 120x_1+60x_2 =120(15)+60(20)=3000"
At C(45,0),"Z= 120x_1+60x_2 =120(45)+60(0)=5400"
Thus, minimum is 2400 at "x_1=0, x_2=40"
Comments
Leave a comment