A small business enterprise makes dresses and trousers. To make a dress
requires 1
2
hour of cutting and 20 minutes of stitching. To make a trouser
requires 15 minutes of cutting and 1
2
hours of stitching. The profit on a dress is
P40 and on a pair of trousers is P50. The business operates for a maximum of
8 hours per day. Determine how many dresses and trousers should be made to
maximize profit and what the maximum profit is.
Let x,y- number of dresses and trousers to done.
Mathematical model is
z=40"\\cdot" x+25"\\cdot" y"\\rarr" max;
50"\\cdot" x+45"\\cdot" y"\\le" 480
(or 10"\\cdot" x+9"\\cdot" y"\\le" 96)
x,y"\\ge" 0
x,y "\\in" Z
Because x is integer "x\\in \\{0,1,2,3,4,5,6,7,8,9\\}"
1) x=9,"y=[\\frac{96-9\\cdot 10}{9}]=[0.6]=0;z=40\\cdot 9+25\\cdot 0=360"
2) x=8,y="\\frac{96-8\\cdot 10}{9}]=[1 \\frac{7}{9}]=1;z=40\\cdot 8+25\\cdot 1=345"
3) x=7,y="\\frac{96-7\\cdot 10}{9}]=[2 \\frac{8}{9}]=2;z=40\\cdot 7+25\\cdot 2=330"
4) x=6,y="\\frac{96-6\\cdot 10}{9}]=[4]=4;z=40\\cdot 6+25\\cdot 4=340"
5) x=5,y="\\frac{96-5\\cdot 10}{9}]=[5 \\frac{1}{9}]=5;z=40\\cdot 5+25\\cdot 5=325"
6) x=4,y="\\frac{96-4\\cdot 10}{9}]=[6 \\frac{2}{9}]=6;z=40\\cdot 4+25\\cdot 6=310"
7) x=3,y="\\frac{96-3\\cdot 10}{9}]=[7 \\frac{2}{9}]=7;z=40\\cdot 3+25\\cdot 7=295"
cases x=0,1,2 worse than dest case (x=10) because 2"\\cdot 40+10\\cdot 25=330<360"
Now all possibilities are considered and optimal solution (xopt,yopt)=(10,0) with zopt=360.
So xopt=10,yopt=0,zopt=360.
Comments
Leave a comment