1) gi(x∗)−bi  is feasible for i=1,2....m 
Where gi(x∗)  is optional value
Writing the equation in residue form
f)x)=2x1+3x2−x12−2x22 
g1(x)=x1+3x2−6 
g2(x)=5x1+2x2−10 
Applying the Kuhn-Tucker conditions (Optimality Condition)
2) 
⎝⎛∂x1∂f∂x2∂f⎠⎞ +λ1   ⎝⎛∂x1∂g1∂x2∂g1⎠⎞ +λ2   ⎝⎛∂x1∂g2∂x2∂g2⎠⎞=0 
2−2x1+λ1+5λ2=0......(1) 
3−4x2+3λ1+2λ2=0.....(2) 
Feasibility condition
x1+3x2≤6 ......(3) 
5x1+2x2≤10......(4) 
Complimentary slackness property
λ1(x1+3x2−6)=0 ....(5) 
λ2(5x1+2x2−10)=0.....(6) 
Non-negativity constraints
λ1≥0,λ2≥0.....(7) 
Case (i)
λ1=0,λ2=0 
From (1) and(2),      2−2x1=0⟹x1=1 
3−4x2=0⟹x2=43 
Point (1,43) is a KKT point
Case (ii)
λ1=0,λ2=0 
Using (1),(2) and (6)
2−2x1+5λ2=0 
3−4x2+2λ2=0 
5x1+2x2−10=0 
x1=22+5λ2,x2=43+2λ2 
5(22+5λ2)+2(43+2λ2)=0 
54λ2=14 
λ2=277 
x1=22+5(277)=5489 
x2=43+2(277)=10895 
This could be a KKT point
Case(iii)
λ1=0,λ2=0 
2−2x1+λ1=0 
3−4x2+3λ1=0 
x1+3x2−6=0 
x1=22+λ1      x2=43+3λ1 
22+λ1+43(3+3λ1)=6 
⟹λ1=1 
Substituting in x1 and x2 
x1=23,x2=23 
But 5x1+2x2=10.5 
This violate ......(4)
∴(23,23)  is not a KKT point.
Case (iv)
λ1=0,λ2=0 
2−2x1+λ1+5λ2=0......(i) 
3−4x2+3λ1+2λ2=0....(ii) 
x1+3x2=6.....(iii) 
5x1+2x2=10.....(iv) 
Solving (iii) and (iv)
5x1+15x2=30 
5x1+2x2=10 
⟹13x2=20 
           x2=1320 
x1=1318 
Substituting x1 and x2  in (i) and (ii)
λ1+5λ2=1310 
3λ1+2λ2=1341 
Solving
             3λ1+15λ2=1330 
             3λ1+2λ2=1341 
           λ2=169−11,λ1=169185 
λ2<0 
                 This violates (7)
z=2x1+3x2−x12−2x22 
Substituting point (1,43) 
z=2(1)+3(43)−(1)2−2(43)2 
=2.125 
Substituting point  (5489,10895) 
z=2(5489)+3(10895−(5489)2−2(10895)2 
=1.671296 
Minimum z=1.671296 
at point (5489,10895) 
 
Comments