Write the Kuhn-Tucker conditions for the following problems and obtain the optimal solution:
Minimize Z= 2x1+3x2-x12- 2x22
Subject to x1+3x2 ≤ 6,
5x1+2x2 ≤ 10,
x1, x2≥ 0
1) "g_{i}(x^*)-b_{i}" is feasible for "i=1,2....m"
Where "g_{i}(x^*)" is optional value
Writing the equation in residue form
"f)x)=2x_{1}+3x_{2}-x_{1}^2-2x_{2}^{2}"
"g_1(x)=x_1+3x_2-6"
"g_2(x)=5x_1+2x_2-10"
Applying the Kuhn-Tucker conditions (Optimality Condition)
2)
"\\begin{pmatrix}\n \\frac { \\partial\\>f}{\\partial\\>x_1} \\\\\\\\\n \\frac{\\partial\\>f}{\\partial\\>x_2} \n\\end{pmatrix}" "+\\lambda1" "\\begin{pmatrix}\n \\frac{\\partial\\>g_1}{\\partial\\>x_1} \\\\\\\\\n \\frac{\\partial\\>g_1}{\\partial\\>x_2} \n\\end{pmatrix}" "+\\lambda2" "\\begin{pmatrix}\n \\frac{\\partial\\>g_2}{\\partial\\>x_1} \\\\\\\\\n \\frac{\\partial\\>g_2}{\\partial\\>x_2} \n\\end{pmatrix}=0"
"2-2x_1+\\lambda_1+5\\lambda_2=0......(1)"
"3-4x_2+3\\lambda_1+2\\lambda_2=0.....(2)"
Feasibility condition
"x_1+3x_2\\le6" "......(3)"
"5x_1+2x_2\\le10\\>\\>......(4)"
Complimentary slackness property
"\\lambda_1(x_1+3x_2-6)=0" "....(5)"
"\\lambda_2(5x_1+2x_2-10)=0\\>.....(6)"
Non-negativity constraints
"\\lambda_1\\ge0,\\>\\>\\lambda_2\\ge0\\>\\>.....(7)"
Case (i)
"\\lambda_1=0,\\lambda_2=0"
From (1) and(2), "2-2x_1=0\\implies\\>x_1=1"
"3-4x_2=0\\implies\\>x_2=\\frac{3}{4}"
Point "(1,\\frac{3}{4})" is a KKT point
Case (ii)
"\\lambda_1=0,\\lambda_2\\ne0"
Using (1),(2) and (6)
"2-2x_1+5\\lambda_2=0"
"3-4x_2+2\\lambda_2=0"
"5x_1+2x_2-10=0"
"x_1=\\frac{2+5\\lambda_2}{2},\\>\\>x_2=\\frac{3+2\\lambda_2}{4}"
"5(\\frac{2+5\\lambda_2}{2})+2(\\frac{3+2\\lambda_2}{4})=0"
"54\\lambda_2=14"
"\\lambda_2=\\frac{7}{27}"
"x_1=\\frac{2+5(\\frac{7}{27})}{2}=\\frac{89}{54}"
"x_2=\\frac{3+2(\\frac{7}{27})}{4}=\\frac{95}{108}"
This could be a KKT point
Case(iii)
"\\lambda_1\\ne0,\\lambda_2=0"
"2-2x_1+\\lambda_1=0"
"3-4x_2+3\\lambda_1=0"
"x_1+3x_2-6=0"
"x_1=\\frac{2+\\lambda_1}{2}" "x_2=\\frac{3+3\\lambda_1}{4}"
"\\frac{2+\\lambda_1}{2}+\\frac{3(3+3\\lambda_1)}{4}=6"
"\\implies\\>\\lambda_1=1"
Substituting in "x_1" and "x_2"
"x_1=\\frac{3}{2},\\>\\>x_2=\\frac{3}{2}"
But "5x_1+2x_2=10.5"
This violate ......(4)
"\\therefore(\\frac{3}{2},\\frac{3}{2})" is not a KKT point.
Case (iv)
"\\lambda_1\\ne0,\\>\\lambda_2\\ne0"
"2-2x_1+\\lambda_1+5\\lambda_2=0\\>......(i)"
"3-4x_2+3\\lambda_1+2\\lambda_2=0\\>....(ii)"
"x_1+3x_2=6\\>.....(iii)"
"5x_1+2x_2=10\\>.....(iv)"
Solving (iii) and (iv)
"5x_1+15x_2=30"
"5x_1+2x_2=10"
"\\implies13x_2=20"
"x_2=\\frac{20}{13}"
"x_1=\\frac{18}{13}"
Substituting "x_1" and "x_2" in (i) and (ii)
"\\lambda_1+5\\lambda_2=\\frac{10}{13}"
"3\\lambda_1+2\\lambda_2=\\frac{41}{13}"
Solving
"3\\lambda_1+15\\lambda_2=\\frac{30}{13}"
"3\\lambda_1+2\\lambda_2=\\frac{41}{13}"
"\\lambda_2=\\frac{-11}{169},\\>\\lambda_1=\\frac{185}{169}"
"\\lambda_2<0"
This violates (7)
"z=2x_1+3x_2-x_1^2-2x_2^2"
Substituting point "(1,\\frac{3}{4})"
"z=2(1)+3(\\frac{3}{4})-(1)^2-2(\\frac{3}{4})^2"
"=2.125"
Substituting point "(\\frac{89}{54},\\frac{95}{108})"
"z=2(\\frac{89}{54})+3(\\frac{95}{108}-(\\frac{89}{54})^2-2(\\frac{95}{108})^2"
"=1.671296"
Minimum "z=1.671296"
at point "(\\frac{89}{54},\\frac{95}{108})"
Comments
Leave a comment