Answer to Question #218804 in Operations Research for Jyoti

Question #218804
Estimated sales revenue (in 000 Rs) of 5 salesmen in 5 districts is as give

65

66

57

60

56

Salesman

P

Q

R

S

T

A

55 85

90

75

80

76

B

75

78

66

72

64

D

125

132

114

120

112

E

75

78

69

72

68

- 414

Find an optimal solution for maximising the total revenue.Estimated sales revenue (in 000 Rs) of 5 salesmen in 5 districts is as given below:

District

C

65

66

57

60

56

Salesman

P

Q

R

S

T

A

55 85

90

75

80

76

B

75

78

66

72

64

D

125

132

114

120

112

E

75

78

69

72

68

- 414

Find an optimal solution for maximising the total revenue.
1
Expert's answer
2021-07-26T15:41:28-0400

We want to find an optimal solution for maximising total revenue. We can do this using the Hungarian method, we first tabularize the given data:ABCDEP55756512575Q90786613278R75665711469S80726012072T76645611268\text{We want to find an optimal solution for maximising total revenue. We can do this }\\\text{using the Hungarian method, we first tabularize the given data:}\\\begin{matrix} & A & B &C&D&E \\\hline P& 55&75&65&125&75\\Q&90&78&66&132&78\\R&75&66&57&114&69\\S&80&72&60&120&72\\T&76&64&56&112&68 \end{matrix}

The given problem is a balanced maximisation problem, so at first we need to convert the matrix into cost/loss matrix. By subtracting all the values in thematrix from the largest value in the matrix(132). we have:\text{The given problem is a balanced maximisation problem, so at first we need to }\\\text{convert the matrix into cost/loss matrix. By subtracting all the values in the}\\\text{matrix from the largest value in the matrix(132). we have:}

ABCDEP775767757Q425466054R5766751863S5260721260T5668762064\begin{matrix} & A & B &C&D&E \\\hline P& 77&57&67&7&57\\Q&42&54&66&0&54\\R&57&66&75&18&63\\S&52&60&72&12&60\\T&56&68&76&20&64 \end{matrix}

By subtracting the smallest vlaue in the row from all elements in the row and subtracting the smallest value in the column from all elements in the column,we obtain the matrix below, we then cover the zeros using the using the lines below:\text{By subtracting the smallest vlaue in the row from all elements in the row }\\\text{and subtracting the smallest value in the column from all elements in the }\\\text{column,we obtain the matrix below, we then cover the zeros using the }\\\text{using the lines below:}

ABCDEP342406Q6610010R30101S40404T00000\begin{matrix} & A & B &C&D&E \\\hline P& 34&2&4&0&6\\Q&6&6&10&0&10\\R&3&0&1&0&1\\S&4&0&4&0&4\\T&0&0&0&0&0 \end{matrix}

The solution is not optimal. The minimum uncovered element is 1 that is subtracted from all elements and added to all elements at intersections.This yields the following matrix \text{The solution is not optimal. The minimum uncovered element is 1 that is}\\\text{ subtracted from all elements and added to all elements at intersections.}\\\text{This yields the following matrix }

ABCDEP332305Q56909R20000S30303T01010\begin{matrix} & A & B &C&D&E \\\hline P& 33&2&3&0&5\\Q&5&6&9&0&9\\R&2&0&0&0&0\\S&3&0&3&0&3\\T&0&1&0&1&0 \end{matrix}

By repeating the steps above we get the matrix below: \text{By repeating the steps above we get the matrix below: }

ABCDEP310103Q34707R20020S30323T01030\begin{matrix} & A & B &C&D&E \\\hline P& 31&0&1&0&3\\Q&3&4&7&0&7\\R&2&0&0&2&0\\S&3&0&3&2&3\\T&0&1&0&3&0 \end{matrix}

We repeat the steps above to get the matrix below: \text{We repeat the steps above to get the matrix below: }

ABCDEP300002Q24606R21030S20322T02040\begin{matrix} & A & B &C&D&E \\\hline P& 30&0&0&0&2 \\\hline Q&2&4&6&0&6 \\\hline R&2&1&0&3&0\\\hline S&2&0&3&2&2\\\hline T&0&2&0&4&0\\\hline \end{matrix}

Since the no. of lines = No. of row/column=5, optimal solution is possible. Here by following the steps we first allot at cell13 [12 means 1st Row 3rd Column] now tie appears as there are more than one zeros in remaining rows/columns. So, we arbitrarily allot assignment in Cell24, then we allot assignment in cell35, cell42 and cell 51. Therefore our final answer is:\text{Since the no. of lines = No. of row/column=5, optimal solution is possible. }\\\text{Here by following the steps we first allot at cell13 [12 means 1st Row 3rd}\\\text{ Column] now tie appears as there are more than one zeros in remaining rows}\\\text{/columns. So, we arbitrarily allot assignment in Cell24, then we allot }\\\text{assignment in cell35, cell42 and cell 51. Therefore our final answer is:}

SalespersonDistrictsSalesRevenuePA65QB132RC69SD72TE76TotalRevenue414\begin{matrix} Salesperson & Districts&Sales Revenue\\\hline P&A&65\\Q&B&132\\R&C&69\\S&D&72\\T&E&76\\& Total Revenue&414 \end{matrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment