Consider the system of equations
2x1+x2+4x3=11
3x1+x2+5x3=14
feasible solution is x1=2,x2=3,x3 =1.Reduce this feasible solution to a basic feasible solution.
2x1+x2=11−4x32x_1+x_2=11-4x_32x1+x2=11−4x3
3x1+x2=14−5x33x_1+x_2=14-5x_33x1+x2=14−5x3
Δ=∣2131∣=−1\Delta=\begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix}=-1Δ=∣∣2311∣∣=−1
Δ1=∣11−4x3114−5x31∣=x3−3\Delta_1=\begin{vmatrix} 11-4x_3 & 1 \\ 14-5x_3 & 1 \end{vmatrix}=x_3-3Δ1=∣∣11−4x314−5x311∣∣=x3−3
Δ2=∣211−4x3314−5x3∣=2x3−5\Delta_2=\begin{vmatrix} 2 & 11-4x_3 \\ 3 & 14-5x_3 \end{vmatrix}=2x_3-5Δ2=∣∣2311−4x314−5x3∣∣=2x3−5
x1=Δ1/Δ=3−x3x_1=\Delta_1/\Delta=3-x_3x1=Δ1/Δ=3−x3
x2=Δ2/Δ=5−2x3x_2=\Delta_2/\Delta=5-2x_3x2=Δ2/Δ=5−2x3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments