Answer to Question #200371 in Operations Research for lHEN

Question #200371

A company that produces two kinds of office tables, T1 and T2. It takes 2 hours to produce the parts of one unit of T1, 1 hour to assemble and 2 hours to polish. It takes 4 hours to produce the parts of one unit of T2, 2.5 hour to assemble and 1.5 hours to polish. Per month, 7000 hours are available for producing the parts, 4000 hours for assembling the parts and 5500 hours for polishing the tables. The profit per unit of T1 is $90 and per unit of T2 is $110. cOMPUTE THE DUAL PRICE.


1
Expert's answer
2021-06-07T11:26:30-0400

optimization problem is


primal problem

maximize 90x+110ysubject to,2x+4y7000x+2.5y40002x+1.5y5500maximize \space 90x+110y\\ subject \ to,\\ 2x+4y\le 7000\\ x+2.5y \le 4000\\ 2x+1.5y\le5500


convert primal problem to dual problem

Min Zd=7000w1+4000w2+5500w3subject to 2w1+w2+2w3904w1+2.5w2+1.5w3110andw1,w2,w30;Min \space Z_d=7000w_1+4000w_2+5500w_3\\ subject \space to\space 2w_1+w_2+2w_3≥90\\ 4w_1+2.5w_2+1.5w_3≥110 \\ and w_1,w_2,w_3≥0;


now we solve dual problem with BIG-M method

Min Z=7000w1+4000w2+5500w3+0w1+0w2+MA1+MA2subject to2w1+w2+2w3w1+A1=904w1+2.5w2+1.5w3w2+A2=110andw1,w2,w3,w1,w2,A1,A20Min \space Z = 7000 w_1 + 4000 w_2 + 5500 w_3 + 0 w_1 + 0 w_2 + MA_1 + M A_2\\ subject \space to\\ 2 w_1 + w_2 + 2 w_3 - w_1 + A_1 = 90\\ 4 w_1 + 2.5 w_2 + 1.5 w_3 - w_2 + A_2 = 110\\ and w_1,w_2,w_3,w_1,w_2,A_1,A_2≥0



Positive max ZjCj is 6M7000 and its column index is 1. So, the entering variable is w1.Minimum ratio is 27.5 and its row index is 2. So, the leaving basis variable is A2. The pivot element is 4.Entering =w1, Departing =A2, Key Element =4Positive\space max\space Z_j-C_j\space is\space 6M-7000\space and\space its\space column\space index\space is\space 1.\\ \space So,\space the\space entering\space variable\space is\space w_1.\\ Minimum\space ratio\space is\space 27.5\space and\space its\space row\space index\space is\space 2.\space \\ So,\space the\space leaving\space basis\space variable\space is\space A_2. \\∴\space The\space pivot\space element\space is\space 4.\\ Entering\space =w_1,\space Departing\space =A_2,\space Key\space Element\space =4



Positive max ZjCj is 1.25M2875 and its column index is 3. So, the entering variable is w3.Minimum ratio is 28 and its row index is 1. So, the leaving basis variable is A1. The pivot element is 1.25.Entering =w3, Departing =A1, Key Element =1.25Positive\space max\space Z_j-C_j\space is\space 1.25M-2875\space and\space its\space column\space index\space is\space 3.\\ \space So,\space the\space entering\space variable\space is\space w_3.\\ Minimum\space ratio\space is\space 28\space and\space its\space row\space index\space is\space 1.\space \\ So,\space the\space leaving\space basis\space variable\space is\space A_1. \\∴\space The\space pivot\space element\space is\space 1.25.\\ Entering\space =w_3,\space Departing\space =A_1,\space Key\space Element\space =1.25


Since all ZjCj0Hence,optimal solution is arrived with value of variables as:w1=17,w2=0,w3=28MinZ=273000we can write solution for primal problemSince \space all\space Zj-Cj≤0\\ Hence, optimal \space solution \space is\space arrived\space with\space value\space of\space variables\space as :\\ w_1=17,w_2=0,w_3=28\\ Min Z=273000\\ we \space can\space write \space solution \space for \space primal \space problem\\

maximum profit $273000 by making type T1 table 2300 and type T2 table 600

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment