Question #178730

Use Simplex method to

Maximize Ζ = 4x + 10x2

Subject 2X+X2 ≤ 50

2X + 5X2 ≤ 100

2X + 3X2 ≤ 100

X, X2 ≥ 0


1
Expert's answer
2021-04-08T13:49:03-0400

MaxZ=4x1+10x2subject to2x1+x2502x1+5x21002x1+3x2100and  x1,x20;Max Z=4x_1+10x_2\\subject\ to\\2x_1+x_2≤50\\2x_1+5x_2≤100\\2x_1+3x_2≤100\\and\ \ x_1,x_2≥0;


The problem is converted to canonical form by adding slack, surplus and artificial variables as appropriate


1. As the constraint-1 is of type '≤' we should add slack variable S1


2. As the constraint-2 is of type '≤' we should add slack variable S2


3. As the constraint-3 is of type '≤' we should add slack variable S3


After introducing slack variables

MaxZ=4x1+10x2+0S1+0S2+0S3subject to2x1+x2+S1=502x1+5x2+S2=1002x1+3x2+S3=100and x1,x2,S1,S2,S30Max Z=4x_1+10x_2+0S_1+0S_2+0S_3\\subject\ to\\2x_1+x_2+S_1=50\\2x_1+5x_2+S_2=100\\2x_1+3x_2+S_3=100\\and \ x1,x2,S1,S2,S3≥0






Negative minimumZjCjZ_j-C_j  is -10 and its column index is 2. So, the entering variable is x2x_2 .


Minimum ratio is 20 and its row index is 2. So, the leaving basis variable is S2S_2 .


∴ The pivot element is 5.


Entering =x2x_2 , Departing =S2S_2 , Key Element =5




Since all ZjCj0Z_j-C_j≥0


Hence, optimal solution is arrived with value of variables as :

x1=0,x2=20x_1=0,x_2=20

Max Z = 200

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS