Answer to Question #173571 in Operations Research for ANJU JAYACHANDRAN

Question #173571

5. (a) Use the simplex method to solve the following L.P.P. (5)

Max 4 1 3 2

z = x + x

Subject to

2x1 + x2 ≤1000

x1 + x2 ≤ 800

400 x1 ≤

x2 ≤ 700

.0 , x1

x2 ≥


1
Expert's answer
2021-05-07T09:07:24-0400

simplex method is too long to explain here you cn studied at https://www.britannica.com/topic/simplex-method


2x1+x21000x1+x2800x1,x202x_1 + x_2 ≤1000\\ x_1 + x_2 ≤ 800\\x_1,x_2\ge0


Z=4x1+3x2Z=4x_1+3x_2


The graphical region of the given inequalities is-







The critical points are-


(200,600)  Z=4x1+3x2=4(200)+3(600)=800+1800=2600Z=4x_1+3x_2=4(200)+3(600)=800+1800=2600

(500,0) Z=4x1+3x2=4(500)+3(0)=2000+0=2000Z=4x_1+3x_2=4(500)+3(0)=2000+0=2000

(0,800) Z=4x1+3x2=4(200)+3(600)=0+2400=2400Z=4x_1+3x_2=4(200)+3(600)=0+2400=2400

(0,0) Z=4x1+3x2=4(0)+3(0)=0+0=0Z=4x_1+3x_2=4(0)+3(0)=0+0=0


The maximum value of Z is 2600 at x1=200,x2=600x_1=200,x_2=600

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment