Equation given is
f(x,y)=6x2−9x−3xy−7y+5y2
taking partial derivative with respect to x and y
∂x∂f=12x−9−3y
∂y∂f=−3x−7+10y
solving above equation to find x and y
12x−9−3y=0 ⟹y=4x−3 . . . . . . . (i)
−3x−7+10y=0 . . . . . . . (ii)
putting value of y from (i) to (ii),
−3x−7+10(4x−3)=0
−3x−7+40x−30=0⟹x=1
then from (i),
y=4(1)−3=1
taking higher partial derivatives,
r=∂x2∂2f=12
t=∂y2∂2f=10
s=∂x∂y∂2f=−3
Now
rt−s2=12∗10−9>0
So point (1,1) is point of local minima.
Minimum value of f(x,y)
f(1,1)=6−9−3−7+5=−8
Comments