Question #107284
Maximize Z = 2a + b – 3c + 5d
Subjected to;
a + 7b + 3c + 7d ≤ 46
3a – b + c +2d ≤ 8
2a + 3b – c + d ≤ 10
Where,
a, b, c, and d all are ≥ 0
1
Expert's answer
2020-04-01T16:05:19-0400

Solve this problem by the method of Lagrange multipliers. We have

{2a+b3c+5dmaxa+7b+3c+7d4603ab+c+2d802a+3bc+d100a0b0c0d0\begin{cases} 2a+b-3c+5d\to\max\\ a+7b+3c+7d-46\le 0\\ 3a-b+c+2d-8\le 0\\ 2a+3b-c+d-10\le 0\\ -a\le 0\\ -b\le 0\\ -c\le 0\\ -d\le 0 \end{cases}

Then L(a,b,c,d,λ)=λ0(2a+b3c+5d)+L(a,b,c,d,\lambda)=\lambda_0(2a+b-3c+5d)+

+λ1(a+7b+3c+7d46)+λ2(3ab+c+2d8)++\lambda_1(a+7b+3c+7d-46)+\lambda_2(3a-b+c+2d-8)+

+λ3(2a+3bc+d10)λ4aλ5bλ6cλ7d+\lambda_3(2a+3b-c+d-10)-\lambda_4a-\lambda_5b-\lambda_6c-\lambda_7d, where λ=(λ0,λ1,λ2,λ3,λ4,λ5,λ6,λ7)\lambda=(\lambda_0,\lambda_1,\lambda_2,\lambda_3,\lambda_4,\lambda_5,\lambda_6,\lambda_7)


If (a,b,c,d)(a,b,c,d) is a point of local maximum, we have that there is λ0\lambda\neq 0 such that

λ00,\lambda_0\ge 0,

λ10,λ20,λ30,λ40,λ50,λ60,λ70\lambda_1\le0, \lambda_2\le 0, \lambda_3\le 0, \lambda_4\le 0, \lambda_5\le 0, \lambda_6\le 0, \lambda_7\le 0

0=La(a,b,c,d,λ)=2λ0+λ1+3λ2+2λ3λ40=L'_a(a,b,c,d,\lambda)=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4

0=Lb(a,b,c,d,λ)=λ0+7λ1λ2+3λ3λ50=L'_b(a,b,c,d,\lambda)=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5

0=Lc(a,b,c,d,λ)=3λ0+3λ1+λ2λ3λ60=L'_c(a,b,c,d,\lambda)=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6

0=Ld(a,b,c,d,λ)=5λ0+7λ1+2λ2+λ3λ70=L'_d(a,b,c,d,\lambda)=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7

λ1(a+7b+3c+7d46)=0\lambda_1(a+7b+3c+7d-46)=0

λ2(3ab+c+2d8)=0\lambda_2(3a-b+c+2d-8)=0

λ3(2a+3bc+d10)=0\lambda_3(2a+3b-c+d-10)=0

λ4a=0\lambda_4a=0

λ5b=0\lambda_5b=0

λ6c=0\lambda_6c=0

λ7d=0\lambda_7d=0

We consider the following cases:

1)λ0=0\lambda_0=0

1.1)λ1=0\lambda_1=0

1.1.1)λ2=0\lambda_2=0

1.1.1.1)λ3=0\lambda_3=0

Then from the equations

0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4

0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5

0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6

0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7

we obtain λ=0\lambda=0. This case does not satisfy us.

1.1.1.2)λ3<0\lambda_3<0

From the equation

0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6

we obtain that λ6>0\lambda_6>0. This case does not satisfy us.

1.1.2)λ2<0\lambda_2<0

From the equations

0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4

0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7

we obtain

λ4=3λ2+2λ3<0,λ7=2λ2+λ3<0\lambda_4=3\lambda_2+2\lambda_3<0, \lambda_7=2\lambda_2+\lambda_3<0

From the equations

λ4a=0,λ7d=0,λ2(3ab+c+2d8)=0\lambda_4a=0, \lambda_7d=0, \lambda_2(3a-b+c+2d-8)=0

we obtain

a=0,d=0,3ab+c+2d8=0a=0, d=0, 3a-b+c+2d-8=0 , that is a=d=0,c=b+8a=d=0, c=b+8

From the equations λ3(3bc10)=0,λ5b=0,λ6c=0\lambda_3(3b-c-10)=0, \lambda_5b=0, \lambda_6c=0 we obtain 2λ3(b9)=0,λ5b=0,λ6(b+8)=02\lambda_3(b-9)=0, \lambda_5b=0, \lambda_6(b+8)=0

Since every system of two equations in b9=0,b=0,b+8=0b-9=0, b=0, b+8=0 has no solutions, we obtain that at least two numbers in {λ3,λ5,λ6}\{\lambda_3, \lambda_5, \lambda_6\} are zeros.

Then the equations

0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5

0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6

imply λ2=0\lambda_2=0 . But it is contradicts with our case λ2<0\lambda_2<0.

1.2)λ1<0\lambda_1<0

From the equations

0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4

0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7

we obtain

λ4=λ1+3λ2+2λ3<0\lambda_4=\lambda_1+3\lambda_2+2\lambda_3<0 and λ7=7λ1+2λ2+λ3<0\lambda_7=7\lambda_1+2\lambda_2+\lambda_3<0

From the equations

λ1(a+7b+3c+7d46)=0,λ4a=0,λ7d=0\lambda_1(a+7b+3c+7d-46)=0, \lambda_4a=0, \lambda_7d=0

we obtain a+7b+3c+7d46=0,a=0,d=0a+7b+3c+7d-46=0, a=0, d=0, that is a=d=0,b=463c7a=d=0, b=\frac{46-3c}{7}

From the equations λ2(3ab+c+2d8)=0,λ3(2a+3bc+d10)=0,\lambda_2(3a-b+c+2d-8)=0, \lambda_3(2a+3b-c+d-10)=0,

λ5b=0,λ6c=0\lambda_5b=0, \lambda_6c=0 we obtain

λ6c=0,3λ57(463c)=0,\lambda_6c=0, \frac{3\lambda_5}{7}\left(\frac{46}{3}-c\right)=0,

10λ27(c515)=0,16λ37(174c)=0\frac{10\lambda_2}{7}\left(c-\frac{51}{5}\right)=0, \frac{16\lambda_3}{7}\left(\frac{17}{4}-c\right)=0

Since every system of two equations from c=0,463c=0,c515=0,174c=0c=0, \frac{46}{3}-c=0, c-\frac{51}{5}=0, \frac{17}{4}-c=0 has no solutions, we obtain that at least three numbers from {λ6,λ5,λ2,λ3}\{\lambda_6,\lambda_5,\lambda_2,\lambda_3\} are zeros. Then the equations

0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5

0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6

imply λ1=0\lambda_1=0. It contradicts with our case λ1<0\lambda_1<0.

2)λ0>0\lambda_0>0. Let λ0=1\lambda_0=1.

2.1)λ1=0\lambda_1=0

2.1.1)λ2=0\lambda_2=0

2.1.1.1)λ3=0\lambda_3=0

Then from 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 we obtain λ4=2λ0>0\lambda_4=2\lambda_0>0. It does not satisfy us.

2.1.1.2)λ3<0\lambda_3<0

From 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6 and 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain 0λ6=3λ0λ3=3λ30\ge\lambda_6=-3\lambda_0-\lambda_3=-3-\lambda_3 and 0λ7=5λ0+λ3=5+λ30\ge\lambda_7=5\lambda_0+\lambda_3=5+\lambda_3. System 3λ30-3-\lambda_3\le 0, 5+λ305+\lambda_3\le 0 does not have solutions.

2.1.2)λ2<0\lambda_2<0

2.1.2.1)λ3=0\lambda_3=0

From 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5 we obtain λ5=λ0λ2>0\lambda_5=\lambda_0-\lambda_2>0. I does not satisfy us.

2.1.2.2)λ3<0\lambda_3<0

2.1.2.2.1)λ4=0\lambda_4=0

From 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 we obtain 0>λ3=11.5λ20>\lambda_3=-1-1.5\lambda_2 and from 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain 0λ7=5+2λ2+λ3=4+0.5λ20\ge\lambda_7=5+2\lambda_2+\lambda_3=4+0.5\lambda_2. System 4+0.5λ20,11.5λ2<04+0.5\lambda_2\le 0, -1-1.5\lambda_2<0 has no solutions.

2.1.2.2.2)λ4<0\lambda_4<0

From λ2(3ab+c+2d8)=λ3(2a+3bc+d10)=\lambda_2(3a-b+c+2d-8)=\lambda_3(2a+3b-c+d-10)=

=λ4a=0=\lambda_4a=0 we obtain 3ab+c+2d8=2a+3bc+d10=a=03a-b+c+2d-8=2a+3b-c+d-10=a=0, that is a=0,b=32(6d),c=72(347d)a=0, b=\frac{3}{2}(6-d), c=\frac{7}{2}\left(\frac{34}{7}-d\right)

2.1.2.2.2.1)d=0d=0. Then b=9,c=17b=9, c=17.

From λ5b=λ6c=0\lambda_5b=\lambda_6c=0 we obtain λ5=λ6=0\lambda_5=\lambda_6=0.

From 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5 and 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6 we obtain λ3=1>0\lambda_3=1>0 and λ2=4>0\lambda_2=4>0. It does not satisfy us.

2.1.2.2.2.2)d=6d=6, then b=0,c=4b=0, c=-4

From λ6c=λ7d=0\lambda_6c=\lambda_7d=0 we obtain λ6=λ7=0\lambda_6=\lambda_7=0. From 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6 and 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain λ2=23,λ3=113\lambda_2=-\frac{2}{3}, \lambda_3=-\frac{11}{3}. Then from 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 and 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5 we obtain λ4=223,λ5=283\lambda_4=-\frac{22}{3}, \lambda_5=-\frac{28}{3}.

So (0,0,4,6)(0,0,-4,6) can be a point of global maximum.

2.1.2.2.2.3)d=347d=\frac{34}{7}, then b=127,c=0b=\frac{12}{7}, c=0

From λ5b=λ7d=0\lambda_5b=\lambda_7d=0 we obtain λ5=λ7=0\lambda_5=\lambda_7=0. From 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5 and 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain λ2=2,λ3=1\lambda_2=-2, \lambda_3=-1. Then from 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 and 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6 we obtain λ4=6\lambda_4=-6 and λ6=4\lambda_6=-4.

So (0,127,0,347)\left(0,\frac{12}{7},0,\frac{34}{7}\right) can be a point of global maximum.

2.1.2.2.2.4)d∉{0,6,347}d\not\in\left\{0,6,\frac{34}{7}\right\} , then b0,c0b\neq0, c\neq 0. From λ5b=λ6c=λ7d=0\lambda_5b=\lambda_6c=\lambda_7d=0 we obtain λ5=λ6=λ7=0\lambda_5=\lambda_6=\lambda_7=0. Then from 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5, 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6, 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain 1λ2+3λ3=01-\lambda_2+3\lambda_3=0, 3+λ2λ3=0-3+\lambda_2-\lambda_3=0, 5+2λ2+λ3=05+2\lambda_2+\lambda_3=0. This sysem has no solutions.

2.2)λ1<0\lambda_1<0

2.2.1)λ2=0\lambda_2=0

2.2.1.1)λ3=0\lambda_3=0

2.2.1.1.1)λ5=0\lambda_5=0. From 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5 we obtain λ1=17λ0=17\lambda_1=-\frac{1}{7}\lambda_0=-\frac{1}{7}. Then from 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 we obtain λ4=2λ0+λ1>0\lambda_4=2\lambda_0+\lambda_1>0. It does not satisfy us.

2.2.1.1.2)λ6=0\lambda_6=0. From 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6 we obtain λ1=λ0>0\lambda_1=\lambda_0>0. It does not satisfy us.

2.2.1.1.3)λ7=0\lambda_7=0. From 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain λ1=57λ0=57\lambda_1=-\frac{5}{7}\lambda_0=-\frac{5}{7}. From 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 we obtain λ4=2λ0+λ1>0\lambda_4=2\lambda_0+\lambda_1>0. It does not satisfy us.

2.2.1.1.5)0∉{λ5,λ6,λ7}0\not\in\{\lambda_5, \lambda_6, \lambda_7\}. From λ5b=λ6c=λ7d=0\lambda_5b=\lambda_6c=\lambda_7d=0 we obtain b=c=d=0b=c=d=0. Since λ1(a+7b+3c+7d46)=0\lambda_1(a+7b+3c+7d-46)=0 and λ1<0\lambda_1<0, we have a+7b+3c+7d46=0a+7b+3c+7d-46=0, that is a=46a=46. Since λ4a=0\lambda_4a=0, we have λ4=0\lambda_4=0.

From 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 we obtain λ1=2λ0=2\lambda_1=-2\lambda_0=-2. Then from 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5, 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6, 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain λ5=13,λ6=9,λ7=9\lambda_5=-13, \lambda_6=-9, \lambda_7=-9. So (46,0,0,0)(46,0,0,0) can be a point of global maximum.

2.2.1.2)λ3<0\lambda_3<0

2.2.1.2.1)λ5=0\lambda_5=0. From 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5 we obtain λ3=7λ1+13\lambda_3=-\frac{7\lambda_1+1}{3}. Then from 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 we obtain 0λ4=2+λ1+2λ3=411λ130\ge\lambda_4=2+\lambda_1+2\lambda_3=\frac{4-11\lambda_1}{3}, that is λ1411>0\lambda_1\ge\frac{4}{11}>0. It does not satisfy us.

Then λ50\lambda_5\neq 0. Since, in addition, λ10\lambda_1\neq 0 and λ30\lambda_3\neq 0, from λ1(a+7b+3c+7d46)=\lambda_1(a+7b+3c+7d-46)=

=λ3(2a+3bc+d10)=λ5b=0=\lambda_3(2a+3b-c+d-10)=\lambda_5b=0 we obtain a+7b+3c+7d46=a+7b+3c+7d-46=

=2a+3bc+d10=b=0=2a+3b-c+d-10=b=0, that is c=137(8213d),a=107(385d)c=\frac{13}{7}\left(\frac{82}{13}-d\right), a=\frac{10}{7}\left(\frac{38}{5}-d\right)

2.2.1.2.2)d=0d=0, then c=827,a=767c=\frac{82}{7}, a=\frac{76}{7}

Since λ4a=λ6c=0\lambda_4a=\lambda_6c=0, we have λ4=λ6=0\lambda_4=\lambda_6=0. Then from 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 and 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6 we obtain λ1=47>0\lambda_1=\frac{4}{7}>0. It does not satisfy us.

2.2.1.2.3)d=8213d=\frac{82}{13} , then c=0,a=2413c=0, a=\frac{24}{13}

Since λ4a=λ7d=0\lambda_4a=\lambda_7d=0, we have λ4=λ7=0\lambda_4=\lambda_7=0. Then from 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 and 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain λ1=45,λ3=35\lambda_1=-\frac{4}{5}, \lambda_3=-\frac{3}{5}. Then from 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5 and 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6 we obtain λ5=325,λ6=245\lambda_5=-\frac{32}{5}, \lambda_6=-\frac{24}{5}. So (2413,0,0,8213)\left(\frac{24}{13},0,0,\frac{82}{13}\right) can be a point of global maximum.

2.2.1.2.4)d=385d=\frac{38}{5}, then c=125,a=0c=-\frac{12}{5}, a=0

Since λ6c=λ7d=0\lambda_6c=\lambda_7d=0, we have λ6=λ7=0\lambda_6=\lambda_7=0. Then from 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6 and 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain λ3=185,λ1=15\lambda_3=-\frac{18}{5}, \lambda_1=-\frac{1}{5}.

From 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 and 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5 we obtain λ4=275,λ5=565\lambda_4=-\frac{27}{5}, \lambda_5=-\frac{56}{5}. So (0,0,125,385)\left(0,0,-\frac{12}{5},\frac{38}{5}\right) can be a point of global maximum.

2.2.1.2.5)d∉{0,8213,385}d\not\in\left\{0,\frac{82}{13},\frac{38}{5}\right\}, then a0,c0a\neq 0, c\neq 0. From λ4a=λ6c=λ7d=0\lambda_4a=\lambda_6c=\lambda_7d=0 we obtain λ4=λ6=λ7=0\lambda_4=\lambda_6=\lambda_7=0. Then from 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4, 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6, 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain that 2+λ1+2λ3=0,3+3λ1λ3=0,0=5+7λ1+λ32+\lambda_1+2\lambda_3=0, -3+3\lambda_1-\lambda_3=0, 0=5+7\lambda_1+\lambda_3. This has no solutions.

2.2.2)λ2<0\lambda_2<0

2.2.2.1)λ3<0\lambda_3<0

From λ1(a+7b+3c+7d46)=0\lambda_1(a+7b+3c+7d-46)=0, λ2(3ab+c+2d8)=0\lambda_2(3a-b+c+2d-8)=0, λ3(2a+3bc+d10)=0\lambda_3(2a+3b-c+d-10)=0 we obtain a=1433(18+d),b=2966(9429d),c=76(1947d)a=-\frac{14}{33}(18+d), b=\frac{29}{66}\left(\frac{94}{29}-d\right), c=\frac{7}{6}\left(\frac{194}{7}-d\right)

2.2.2.1.1)d=0d=0, then a=8411,b=4733,c=973a=-\frac{84}{11}, b=\frac{47}{33}, c=\frac{97}{3}

Since λ4a=λ5b=λ6c=0\lambda_4a=\lambda_5b=\lambda_6c=0, we have λ4=λ5=λ6=0\lambda_4=\lambda_5=\lambda_6=0.

From 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4, 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5, 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6 we obtain λ1=1633>0,λ2=433>0,λ3=4733\lambda_1=\frac{16}{33}>0, \lambda_2=\frac{4}{33}>0, \lambda_3=-\frac{47}{33} . I does not satisfy us.

2.2.2.1.2)d=18d=-18, then a=0,b=283,c=1603a=0, b=\frac{28}{3}, c=\frac{160}{3}. Since λ5b=λ6c=λ7d=0\lambda_5b=\lambda_6c=\lambda_7d=0, we have λ5=λ6=λ7=0\lambda_5=\lambda_6=\lambda_7=0.

From 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5, 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6, 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain λ1=27,λ2=27>0,λ3=37>0\lambda_1=-\frac{2}{7}, \lambda_2=\frac{2}{7}>0, \lambda_3=\frac{3}{7}>0 . I does not satisfy us.

2.2.2.1.3)d=9429d=\frac{94}{29}, then a=78427,b=0,c=82829a=-\frac{784}{27}, b=0, c=\frac{828}{29}

Since λ4a=λ6c=λ7d=0\lambda_4a=\lambda_6c=\lambda_7d=0, we have λ4=λ6=λ7=0\lambda_4=\lambda_6=\lambda_7=0

From 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4, 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6, 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain λ1=729,λ2=429>0,λ3=6358\lambda_1=-\frac{7}{29}, \lambda_2=\frac{4}{29}>0,\lambda_3=-\frac{63}{58} . It does not satisfy us.

2.2.2.1.4)d=1947d=\frac{194}{7}, then a=64033,b=82877,c=0a=-\frac{640}{33}, b=-\frac{828}{77}, c=0

Since λ4a=λ5b=λ7d=0\lambda_4a=\lambda_5b=\lambda_7d=0, we have λ4=λ5=λ7=0\lambda_4=\lambda_5=\lambda_7=0

From 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4, 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6, 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain λ1=2229,λ2=5429>0,λ3=9929\lambda_1=-\frac{22}{29}, \lambda_2=\frac{54}{29}>0, \lambda_3=-\frac{99}{29}. I does not satisfy us.

2.2.2.1.5)d∉{0,18,9429,19427}d\not\in\left\{0,-18,\frac{94}{29},\frac{194}{27}\right\}, then a0,b0,c0a\neq 0, b\neq 0, c\neq 0

Since λ4a=λ5b=λ6c=λ7d=0\lambda_4a=\lambda_5b=\lambda_6c=\lambda_7d=0, we have λ4=λ5=λ6=λ7=0\lambda_4=\lambda_5=\lambda_6=\lambda_7=0

Then 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4, 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5 , 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6, 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7. This system has no solutions.

2.2.2.2)λ3=0\lambda_3=0

2.2.2.2.1)λ6=0\lambda_6=0. Then from 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6 we obtain 3λ1+λ2=33\lambda_1+\lambda_2=3. Since λ1<0,λ2<0\lambda_1<0, \lambda_2<0 , it does not satisfy us.


Then λ6<0\lambda_6<0. From λ6c=0\lambda_6c=0 we obtain c=0c=0

Since λ1<0,λ2<0\lambda_1<0, \lambda_2<0, and λ1(a+7b+3c+7d46)=0\lambda_1(a+7b+3c+7d-46)=0 , λ2(3ab+c+2d8)=0\lambda_2(3a-b+c+2d-8)=0, we obtain a+7b+3c+7d46=0,3ab+c+2d8=0a+7b+3c+7d-46=0, 3a-b+c+2d-8=0

So c=0,b=1922(13019d),a=2122(347d)c=0, b=\frac{19}{22}\left(\frac{130}{19}-d\right), a=\frac{21}{22}\left(\frac{34}{7}-d\right)

2.2.2.2.2)d=0d=0 , then b=6511,a=5111b=\frac{65}{11}, a=\frac{51}{11}

Since λ4a=λ5b=0\lambda_4a=\lambda_5b=0, we have λ4=λ5=0\lambda_4=\lambda_5=0. Since 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 and 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5, we obtain λ1=522,λ2=1322\lambda_1=-\frac{5}{22}, \lambda_2=-\frac{13}{22}

Then from 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 we obtain λ7=4922>0\lambda_7=\frac{49}{22}>0. It does not satisfy us.

2.2.2.2.3)d=13019d=\frac{130}{19}, then b=0,a=3619b=0, a=-\frac{36}{19}

Since λ4a=λ7d=0\lambda_4a=\lambda_7d=0, we have λ4=λ7=0\lambda_4=\lambda_7=0 . Since 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 and 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7, we obtain λ1=919,λ2=1119\lambda_1=-\frac{9}{19}, \lambda_2=-\frac{11}{19}

Then from 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5, 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6 we obtain λ5=3319,λ6=5\lambda_5=-\frac{33}{19}, \lambda_6=-5. So (3619,0,0,13019)\left(-\frac{36}{19},0,0,\frac{130}{19}\right) can be a point of global maximum.

2.2.2.2.4)d=347d=\frac{34}{7} , then b=127,a=0b=\frac{12}{7}, a=0

Since λ5b=λ7d=0\lambda_5b=\lambda_7d=0 , we have λ5=λ7=0\lambda_5=\lambda_7=0. Since 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5 and 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7, we obtain λ1=13,λ2=43\lambda_1=-\frac{1}{3}, \lambda_2=-\frac{4}{3}. Then from 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4 and 0=3λ0+3λ1+λ2λ3λ60=-3\lambda_0+3\lambda_1+\lambda_2-\lambda_3-\lambda_6 we obtain λ4=73\lambda_4=-\frac{7}{3} and λ6=163\lambda_6=-\frac{16}{3}. So (0,127,0,347)\left(0,\frac{12}{7},0,\frac{34}{7}\right) can be a point of global maximum.

2.2.2.2.5)d∉{0,13019,347}d\not\in\left\{0,\frac{130}{19},\frac{34}{7}\right\}, then a0,b0a\neq 0, b\neq 0. Since λ4a=λ5b=λ7d=0\lambda_4a=\lambda_5b=\lambda_7d=0, we have λ4=λ5=λ7=0\lambda_4=\lambda_5=\lambda_7=0. Then the system 0=2λ0+λ1+3λ2+2λ3λ40=2\lambda_0+\lambda_1+3\lambda_2+2\lambda_3-\lambda_4, 0=λ0+7λ1λ2+3λ3λ50=\lambda_0+7\lambda_1-\lambda_2+3\lambda_3-\lambda_5, 0=5λ0+7λ1+2λ2+λ3λ70=5\lambda_0+7\lambda_1+2\lambda_2+\lambda_3-\lambda_7 has no solutions.


Consider set of our points A={(0,0,4,6),(0,127,0,347),(46,0,0,0),A=\bigl\{(0,0,-4,6),\left(0,\frac{12}{7},0,\frac{34}{7}\right),(46,0,0,0),

(2413,0,0,8213),(0,0,125,385),\left(\frac{24}{13},0,0,\frac{82}{13}\right),\left(0,0,-\frac{12}{5},\frac{38}{5}\right),

(3619,0,0,13019),(0,127,0,347)}\left(-\frac{36}{19},0,0,\frac{130}{19}\right),\left(0,\frac{12}{7},0,\frac{34}{7}\right)\bigr\}

Let B={(a,b,c,d)a+7b+3c+7d46,B=\{(a,b,c,d)| a+7b+3c+7d\le 46,

3ab+c+2d8,2a+3bc+d10,3a-b+c+2d \le 8, 2a+3b-c+d\le 10,

a0,b0,c0,d0}a\ge 0, b\ge 0, c\ge 0, d\ge 0\}.

Then AB={(0,127,0,347)}A\cap B=\left\{\left(0,\frac{12}{7},0,\frac{34}{7}\right)\right\}

Let f(a,b,c,d)=2a+b3c+5df(a,b,c,d)=2a+b-3c+5d, then f(AB)={26}f(A\cap B)=\{26\}.

We have that BB is closed as intersection of closed sets. Also B{(a,b,c,d)a+7b+3c+7d46,B\subset\{(a,b,c,d)|a+7b+3c+7d\le 46,

a0,b0,c0,d0}a\ge 0, b\ge 0, c\ge 0, d\ge 0\}\subset

[0,46]×[0,467]×[0,463]×[0,467]\subset[0,46]\times\left[0,\frac{46}{7}\right]\times\left[0,\frac{46}{3}\right]\times\left[0,\frac{46}{7}\right]. So BB is bounded. By the Heine–Borel theorem we obtain that BB is a compact set. Then since ff is continuous on BB, there is a maximum of f(B)f(B).

We have that the maximum of f(B)f(B) is f(0,127,0,347)=26f\left(0,\frac{12}{7},0,\frac{34}{7}\right)=26.

Answer: 2626 in point (0,127,0,347)\left(0,\frac{12}{7},0,\frac{34}{7}\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS