+λ3(2a+3b−c+d−10)−λ4a−λ5b−λ6c−λ7d, where λ=(λ0,λ1,λ2,λ3,λ4,λ5,λ6,λ7)
If (a,b,c,d) is a point of local maximum, we have that there is λ=0 such that
λ0≥0,
λ1≤0,λ2≤0,λ3≤0,λ4≤0,λ5≤0,λ6≤0,λ7≤0
0=La′(a,b,c,d,λ)=2λ0+λ1+3λ2+2λ3−λ4
0=Lb′(a,b,c,d,λ)=λ0+7λ1−λ2+3λ3−λ5
0=Lc′(a,b,c,d,λ)=−3λ0+3λ1+λ2−λ3−λ6
0=Ld′(a,b,c,d,λ)=5λ0+7λ1+2λ2+λ3−λ7
λ1(a+7b+3c+7d−46)=0
λ2(3a−b+c+2d−8)=0
λ3(2a+3b−c+d−10)=0
λ4a=0
λ5b=0
λ6c=0
λ7d=0
We consider the following cases:
1)λ0=0
1.1)λ1=0
1.1.1)λ2=0
1.1.1.1)λ3=0
Then from the equations
0=2λ0+λ1+3λ2+2λ3−λ4
0=λ0+7λ1−λ2+3λ3−λ5
0=−3λ0+3λ1+λ2−λ3−λ6
0=5λ0+7λ1+2λ2+λ3−λ7
we obtain λ=0. This case does not satisfy us.
1.1.1.2)λ3<0
From the equation
0=−3λ0+3λ1+λ2−λ3−λ6
we obtain that λ6>0. This case does not satisfy us.
1.1.2)λ2<0
From the equations
0=2λ0+λ1+3λ2+2λ3−λ4
0=5λ0+7λ1+2λ2+λ3−λ7
we obtain
λ4=3λ2+2λ3<0,λ7=2λ2+λ3<0
From the equations
λ4a=0,λ7d=0,λ2(3a−b+c+2d−8)=0
we obtain
a=0,d=0,3a−b+c+2d−8=0 , that is a=d=0,c=b+8
From the equations λ3(3b−c−10)=0,λ5b=0,λ6c=0 we obtain 2λ3(b−9)=0,λ5b=0,λ6(b+8)=0
Since every system of two equations in b−9=0,b=0,b+8=0 has no solutions, we obtain that at least two numbers in {λ3,λ5,λ6} are zeros.
Then the equations
0=λ0+7λ1−λ2+3λ3−λ5
0=−3λ0+3λ1+λ2−λ3−λ6
imply λ2=0 . But it is contradicts with our case λ2<0.
1.2)λ1<0
From the equations
0=2λ0+λ1+3λ2+2λ3−λ4
0=5λ0+7λ1+2λ2+λ3−λ7
we obtain
λ4=λ1+3λ2+2λ3<0 and λ7=7λ1+2λ2+λ3<0
From the equations
λ1(a+7b+3c+7d−46)=0,λ4a=0,λ7d=0
we obtain a+7b+3c+7d−46=0,a=0,d=0, that is a=d=0,b=746−3c
From the equations λ2(3a−b+c+2d−8)=0,λ3(2a+3b−c+d−10)=0,
λ5b=0,λ6c=0 we obtain
λ6c=0,73λ5(346−c)=0,
710λ2(c−551)=0,716λ3(417−c)=0
Since every system of two equations from c=0,346−c=0,c−551=0,417−c=0 has no solutions, we obtain that at least three numbers from {λ6,λ5,λ2,λ3} are zeros. Then the equations
0=λ0+7λ1−λ2+3λ3−λ5
0=−3λ0+3λ1+λ2−λ3−λ6
imply λ1=0. It contradicts with our case λ1<0.
2)λ0>0. Let λ0=1.
2.1)λ1=0
2.1.1)λ2=0
2.1.1.1)λ3=0
Then from 0=2λ0+λ1+3λ2+2λ3−λ4 we obtain λ4=2λ0>0. It does not satisfy us.
2.1.1.2)λ3<0
From 0=−3λ0+3λ1+λ2−λ3−λ6 and 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain 0≥λ6=−3λ0−λ3=−3−λ3 and 0≥λ7=5λ0+λ3=5+λ3. System −3−λ3≤0, 5+λ3≤0 does not have solutions.
2.1.2)λ2<0
2.1.2.1)λ3=0
From 0=λ0+7λ1−λ2+3λ3−λ5 we obtain λ5=λ0−λ2>0. I does not satisfy us.
2.1.2.2)λ3<0
2.1.2.2.1)λ4=0
From 0=2λ0+λ1+3λ2+2λ3−λ4 we obtain 0>λ3=−1−1.5λ2 and from 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain 0≥λ7=5+2λ2+λ3=4+0.5λ2. System 4+0.5λ2≤0,−1−1.5λ2<0 has no solutions.
2.1.2.2.2)λ4<0
From λ2(3a−b+c+2d−8)=λ3(2a+3b−c+d−10)=
=λ4a=0 we obtain 3a−b+c+2d−8=2a+3b−c+d−10=a=0, that is a=0,b=23(6−d),c=27(734−d)
2.1.2.2.2.1)d=0. Then b=9,c=17.
From λ5b=λ6c=0 we obtain λ5=λ6=0.
From 0=λ0+7λ1−λ2+3λ3−λ5 and 0=−3λ0+3λ1+λ2−λ3−λ6 we obtain λ3=1>0 and λ2=4>0. It does not satisfy us.
2.1.2.2.2.2)d=6, then b=0,c=−4
From λ6c=λ7d=0 we obtain λ6=λ7=0. From 0=−3λ0+3λ1+λ2−λ3−λ6 and 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain λ2=−32,λ3=−311. Then from 0=2λ0+λ1+3λ2+2λ3−λ4 and 0=λ0+7λ1−λ2+3λ3−λ5 we obtain λ4=−322,λ5=−328.
So (0,0,−4,6) can be a point of global maximum.
2.1.2.2.2.3)d=734, then b=712,c=0
From λ5b=λ7d=0 we obtain λ5=λ7=0. From 0=λ0+7λ1−λ2+3λ3−λ5 and 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain λ2=−2,λ3=−1. Then from 0=2λ0+λ1+3λ2+2λ3−λ4 and 0=−3λ0+3λ1+λ2−λ3−λ6 we obtain λ4=−6 and λ6=−4.
So (0,712,0,734) can be a point of global maximum.
2.1.2.2.2.4)d∈{0,6,734} , then b=0,c=0. From λ5b=λ6c=λ7d=0 we obtain λ5=λ6=λ7=0. Then from 0=λ0+7λ1−λ2+3λ3−λ5, 0=−3λ0+3λ1+λ2−λ3−λ6, 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain 1−λ2+3λ3=0, −3+λ2−λ3=0, 5+2λ2+λ3=0. This sysem has no solutions.
2.2)λ1<0
2.2.1)λ2=0
2.2.1.1)λ3=0
2.2.1.1.1)λ5=0. From 0=λ0+7λ1−λ2+3λ3−λ5 we obtain λ1=−71λ0=−71. Then from 0=2λ0+λ1+3λ2+2λ3−λ4 we obtain λ4=2λ0+λ1>0. It does not satisfy us.
2.2.1.1.2)λ6=0. From 0=−3λ0+3λ1+λ2−λ3−λ6 we obtain λ1=λ0>0. It does not satisfy us.
2.2.1.1.3)λ7=0. From 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain λ1=−75λ0=−75. From 0=2λ0+λ1+3λ2+2λ3−λ4 we obtain λ4=2λ0+λ1>0. It does not satisfy us.
2.2.1.1.5)0∈{λ5,λ6,λ7}. From λ5b=λ6c=λ7d=0 we obtain b=c=d=0. Since λ1(a+7b+3c+7d−46)=0 and λ1<0, we have a+7b+3c+7d−46=0, that is a=46. Since λ4a=0, we have λ4=0.
From 0=2λ0+λ1+3λ2+2λ3−λ4 we obtain λ1=−2λ0=−2. Then from 0=λ0+7λ1−λ2+3λ3−λ5, 0=−3λ0+3λ1+λ2−λ3−λ6, 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain λ5=−13,λ6=−9,λ7=−9. So (46,0,0,0) can be a point of global maximum.
2.2.1.2)λ3<0
2.2.1.2.1)λ5=0. From 0=λ0+7λ1−λ2+3λ3−λ5 we obtain λ3=−37λ1+1. Then from 0=2λ0+λ1+3λ2+2λ3−λ4 we obtain 0≥λ4=2+λ1+2λ3=34−11λ1, that is λ1≥114>0. It does not satisfy us.
Then λ5=0. Since, in addition, λ1=0 and λ3=0, from λ1(a+7b+3c+7d−46)=
=λ3(2a+3b−c+d−10)=λ5b=0 we obtain a+7b+3c+7d−46=
=2a+3b−c+d−10=b=0, that is c=713(1382−d),a=710(538−d)
2.2.1.2.2)d=0, then c=782,a=776
Since λ4a=λ6c=0, we have λ4=λ6=0. Then from 0=2λ0+λ1+3λ2+2λ3−λ4 and 0=−3λ0+3λ1+λ2−λ3−λ6 we obtain λ1=74>0. It does not satisfy us.
2.2.1.2.3)d=1382 , then c=0,a=1324
Since λ4a=λ7d=0, we have λ4=λ7=0. Then from 0=2λ0+λ1+3λ2+2λ3−λ4 and 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain λ1=−54,λ3=−53. Then from 0=λ0+7λ1−λ2+3λ3−λ5 and 0=−3λ0+3λ1+λ2−λ3−λ6 we obtain λ5=−532,λ6=−524. So (1324,0,0,1382) can be a point of global maximum.
2.2.1.2.4)d=538, then c=−512,a=0
Since λ6c=λ7d=0, we have λ6=λ7=0. Then from 0=−3λ0+3λ1+λ2−λ3−λ6 and 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain λ3=−518,λ1=−51.
From 0=2λ0+λ1+3λ2+2λ3−λ4 and 0=λ0+7λ1−λ2+3λ3−λ5 we obtain λ4=−527,λ5=−556. So (0,0,−512,538) can be a point of global maximum.
2.2.1.2.5)d∈{0,1382,538}, then a=0,c=0. From λ4a=λ6c=λ7d=0 we obtain λ4=λ6=λ7=0. Then from 0=2λ0+λ1+3λ2+2λ3−λ4, 0=−3λ0+3λ1+λ2−λ3−λ6, 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain that 2+λ1+2λ3=0,−3+3λ1−λ3=0,0=5+7λ1+λ3. This has no solutions.
2.2.2)λ2<0
2.2.2.1)λ3<0
From λ1(a+7b+3c+7d−46)=0, λ2(3a−b+c+2d−8)=0, λ3(2a+3b−c+d−10)=0 we obtain a=−3314(18+d),b=6629(2994−d),c=67(7194−d)
2.2.2.1.1)d=0, then a=−1184,b=3347,c=397
Since λ4a=λ5b=λ6c=0, we have λ4=λ5=λ6=0.
From 0=2λ0+λ1+3λ2+2λ3−λ4, 0=λ0+7λ1−λ2+3λ3−λ5, 0=−3λ0+3λ1+λ2−λ3−λ6 we obtain λ1=3316>0,λ2=334>0,λ3=−3347 . I does not satisfy us.
2.2.2.1.2)d=−18, then a=0,b=328,c=3160. Since λ5b=λ6c=λ7d=0, we have λ5=λ6=λ7=0.
From 0=λ0+7λ1−λ2+3λ3−λ5, 0=−3λ0+3λ1+λ2−λ3−λ6, 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain λ1=−72,λ2=72>0,λ3=73>0 . I does not satisfy us.
2.2.2.1.3)d=2994, then a=−27784,b=0,c=29828
Since λ4a=λ6c=λ7d=0, we have λ4=λ6=λ7=0
From 0=2λ0+λ1+3λ2+2λ3−λ4, 0=−3λ0+3λ1+λ2−λ3−λ6, 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain λ1=−297,λ2=294>0,λ3=−5863 . It does not satisfy us.
2.2.2.1.4)d=7194, then a=−33640,b=−77828,c=0
Since λ4a=λ5b=λ7d=0, we have λ4=λ5=λ7=0
From 0=2λ0+λ1+3λ2+2λ3−λ4, 0=−3λ0+3λ1+λ2−λ3−λ6, 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain λ1=−2922,λ2=2954>0,λ3=−2999. I does not satisfy us.
2.2.2.1.5)d∈{0,−18,2994,27194}, then a=0,b=0,c=0
Since λ4a=λ5b=λ6c=λ7d=0, we have λ4=λ5=λ6=λ7=0
Then 0=2λ0+λ1+3λ2+2λ3−λ4, 0=λ0+7λ1−λ2+3λ3−λ5 , 0=−3λ0+3λ1+λ2−λ3−λ6, 0=5λ0+7λ1+2λ2+λ3−λ7. This system has no solutions.
2.2.2.2)λ3=0
2.2.2.2.1)λ6=0. Then from 0=−3λ0+3λ1+λ2−λ3−λ6 we obtain 3λ1+λ2=3. Since λ1<0,λ2<0 , it does not satisfy us.
Then λ6<0. From λ6c=0 we obtain c=0
Since λ1<0,λ2<0, and λ1(a+7b+3c+7d−46)=0 , λ2(3a−b+c+2d−8)=0, we obtain a+7b+3c+7d−46=0,3a−b+c+2d−8=0
So c=0,b=2219(19130−d),a=2221(734−d)
2.2.2.2.2)d=0 , then b=1165,a=1151
Since λ4a=λ5b=0, we have λ4=λ5=0. Since 0=2λ0+λ1+3λ2+2λ3−λ4 and 0=λ0+7λ1−λ2+3λ3−λ5, we obtain λ1=−225,λ2=−2213
Then from 0=5λ0+7λ1+2λ2+λ3−λ7 we obtain λ7=2249>0. It does not satisfy us.
2.2.2.2.3)d=19130, then b=0,a=−1936
Since λ4a=λ7d=0, we have λ4=λ7=0 . Since 0=2λ0+λ1+3λ2+2λ3−λ4 and 0=5λ0+7λ1+2λ2+λ3−λ7, we obtain λ1=−199,λ2=−1911
Then from 0=λ0+7λ1−λ2+3λ3−λ5, 0=−3λ0+3λ1+λ2−λ3−λ6 we obtain λ5=−1933,λ6=−5. So (−1936,0,0,19130) can be a point of global maximum.
2.2.2.2.4)d=734 , then b=712,a=0
Since λ5b=λ7d=0 , we have λ5=λ7=0. Since 0=λ0+7λ1−λ2+3λ3−λ5 and 0=5λ0+7λ1+2λ2+λ3−λ7, we obtain λ1=−31,λ2=−34. Then from 0=2λ0+λ1+3λ2+2λ3−λ4 and 0=−3λ0+3λ1+λ2−λ3−λ6 we obtain λ4=−37 and λ6=−316. So (0,712,0,734) can be a point of global maximum.
2.2.2.2.5)d∈{0,19130,734}, then a=0,b=0. Since λ4a=λ5b=λ7d=0, we have λ4=λ5=λ7=0. Then the system 0=2λ0+λ1+3λ2+2λ3−λ4, 0=λ0+7λ1−λ2+3λ3−λ5, 0=5λ0+7λ1+2λ2+λ3−λ7 has no solutions.
Consider set of our points A={(0,0,−4,6),(0,712,0,734),(46,0,0,0),
(1324,0,0,1382),(0,0,−512,538),
(−1936,0,0,19130),(0,712,0,734)}
Let B={(a,b,c,d)∣a+7b+3c+7d≤46,
3a−b+c+2d≤8,2a+3b−c+d≤10,
a≥0,b≥0,c≥0,d≥0}.
Then A∩B={(0,712,0,734)}
Let f(a,b,c,d)=2a+b−3c+5d, then f(A∩B)={26}.
We have that B is closed as intersection of closed sets. Also B⊂{(a,b,c,d)∣a+7b+3c+7d≤46,
a≥0,b≥0,c≥0,d≥0}⊂
⊂[0,46]×[0,746]×[0,346]×[0,746]. So B is bounded. By the Heine–Borel theorem we obtain that B is a compact set. Then since f is continuous on B, there is a maximum of f(B).
We have that the maximum of f(B) is f(0,712,0,734)=26.
Comments