"\\nabla_{x,y,\\lambda} =(\\frac{\\partial V}{\\partial x},\\frac{\\partial V}{\\partial y},\n\\frac{\\partial V}{\\partial x}) =0"
Take partial derivatives of "V(x,y,\\lambda)= xy+\\lambda(2,000-20x-10y)"
"\\frac{\\partial V(x,t,\\lambda)}{\\partial x} = y-20\\lambda"
"\\frac{\\partial V(x,t,\\lambda)}{\\partial y} = x-10\\lambda"
"\\frac{\\partial V(x,t,\\lambda)}{\\partial \\lambda} = 2,000-20x-10y"
Finally, we get the system of equations
"\\begin{cases} y-20\\lambda = 0 \\\\ x-10 \\lambda=0\\\\ 2,000-20x-10y=0\\end{cases}"
Solve this system:
"\\begin{cases} y=20\\lambda \\\\ x=10 \\lambda\\\\ 2,000-200\\lambda-200\\lambda=0\\end{cases}"
"\\begin{cases} y=20\\lambda \\\\ x=10 \\lambda\\\\ 400\\lambda= 2,000\\end{cases}"
"\\begin{cases} \\lambda= 5 \\\\ x=50 \\\\y=100\\end{cases}"
Comments
Leave a comment