∇ x , y , λ = ( ∂ V ∂ x , ∂ V ∂ y , ∂ V ∂ x ) = 0 \nabla_{x,y,\lambda} =(\frac{\partial V}{\partial x},\frac{\partial V}{\partial y},
\frac{\partial V}{\partial x})  =0 ∇ x , y , λ  = ( ∂ x ∂ V  , ∂ y ∂ V  , ∂ x ∂ V  ) = 0   
Take partial derivatives of V ( x , y , λ ) = x y + λ ( 2 , 000 − 20 x − 10 y ) V(x,y,\lambda)= xy+\lambda(2,000-20x-10y) V ( x , y , λ ) = x y + λ ( 2 , 000 − 20 x − 10 y )   
∂ V ( x , t , λ ) ∂ x = y − 20 λ \frac{\partial V(x,t,\lambda)}{\partial x} = y-20\lambda ∂ x ∂ V ( x , t , λ )  = y − 20 λ   
∂ V ( x , t , λ ) ∂ y = x − 10 λ \frac{\partial V(x,t,\lambda)}{\partial y} = x-10\lambda ∂ y ∂ V ( x , t , λ )  = x − 10 λ   
∂ V ( x , t , λ ) ∂ λ = 2 , 000 − 20 x − 10 y \frac{\partial V(x,t,\lambda)}{\partial \lambda} = 2,000-20x-10y ∂ λ ∂ V ( x , t , λ )  = 2 , 000 − 20 x − 10 y   
Finally, we get the system of equations
{ y − 20 λ = 0 x − 10 λ = 0 2 , 000 − 20 x − 10 y = 0 \begin{cases} y-20\lambda = 0 \\ x-10 \lambda=0\\ 2,000-20x-10y=0\end{cases} ⎩ ⎨ ⎧  y − 20 λ = 0 x − 10 λ = 0 2 , 000 − 20 x − 10 y = 0    
Solve this system:
{ y = 20 λ x = 10 λ 2 , 000 − 200 λ − 200 λ = 0 \begin{cases} y=20\lambda  \\ x=10 \lambda\\ 2,000-200\lambda-200\lambda=0\end{cases} ⎩ ⎨ ⎧  y = 20 λ x = 10 λ 2 , 000 − 200 λ − 200 λ = 0    
{ y = 20 λ x = 10 λ 400 λ = 2 , 000 \begin{cases} y=20\lambda  \\ x=10 \lambda\\ 400\lambda= 2,000\end{cases} ⎩ ⎨ ⎧  y = 20 λ x = 10 λ 400 λ = 2 , 000    
{ λ = 5 x = 50 y = 100 \begin{cases} \lambda= 5 \\ x=50 \\y=100\end{cases} ⎩ ⎨ ⎧  λ = 5 x = 50 y = 100    
                             
Comments