Answer to Question #146298 in Matrix | Tensor Analysis for Promise Omiponle

Question #146298
Then n x n matrix A= [aij] is called a diagonal matrix if aij= 0 when i =/= j. Verify that the product of two n x n diagonal matrices is again a diagonal matrix, and give a simple rule for determining this product.
1
Expert's answer
2020-12-01T05:49:19-0500

let:

A=[a110000a2200000ann]A = \begin{bmatrix} a_{11} & 0 & 0 & \ldots & 0 \\ 0 & a_{22} & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 0 & 0 & a_{nn} \end{bmatrix}


B=[b110000b2200000bnn]B = \begin{bmatrix} b_{11} & 0 & 0 & \ldots & 0 \\ 0 & b_{22} & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & \ldots & 0 & 0 & b_{nn} \end{bmatrix}


C=[c11c12c1nc21c22c2ncn1cn2cnn]C = \begin{bmatrix} c_{11} & c_{12} & \ldots & c_{1n} \\ c_{21} & c_{22} & \ldots & c_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ c_{n1} & \ldots & c_{n2} & c_{nn} \end{bmatrix}


Then:

c11=a11b11+00++00=a11b11c12=a110+0b22++00=0c1n=a110+00++0bnn=0c_{11} = a_{11} \cdot b_{11} + 0 \cdot 0 + \ldots + 0 \cdot 0 = a_{11} \cdot b_{11} \\ c_{12} = a_{11} \cdot 0 + 0 \cdot b_{22} + \ldots + 0 \cdot 0 = 0 \\ \ldots \\ c_{1n} = a_{11} \cdot 0 + 0 \cdot 0 + \ldots + 0 \cdot b_{nn}= 0 \\

c21=0b11+a220++00=0c22=00+a22b22+00++00=a22b22c2n=00+a220++00+0bnn=0c_{21} = 0 \cdot b_{11} + a_{22} \cdot 0 + \ldots + 0 \cdot 0 = 0 \\ c_{22} = 0 \cdot 0 + a_{22} \cdot b_{22} + 0 \cdot 0 + \ldots + 0 \cdot 0 = a_{22} \cdot b_{22} \\ \ldots \\ c_{2n} = 0 \cdot 0 + a_{22} \cdot 0 + \ldots + 0 \cdot 0 + 0 \cdot b_{nn}= 0 \\

\ldots \\ \ldots \\ \ldots \\

cn1=0b11+00++ann0=0cn2=00+0b22++ann0=0cnn=00++00+annbnn=annbnnc_{n1} = 0 \cdot b_{11} + 0 \cdot 0 + \ldots + a_{nn} \cdot 0 = 0 \\ c_{n2} = 0 \cdot 0 + 0 \cdot b_{22} + \ldots + a_{nn} \cdot 0 = 0 \\ \ldots \\ c_{nn} = 0 \cdot 0 + \ldots + 0 \cdot 0 + a_{nn} \cdot b_{nn}= a_{nn} \cdot b_{nn} \\

It is shown that after multiplication of matrix A and B we receive matrix C which have non-zero diagonal elements, namely: cij=0,ij,cii0,i=1,2,,nc_{ij} = 0, i \ne j, c_{ii} \ne 0,i=1,2,\ldots,n . So C is diagonal matrix.


And formula of multiplication of two diagonal matrices is:

AB=Ccii=aiibii,i=1,ncij=0,ijA \cdot B = C \\ c_{ii} = a_{ii} \cdot b_{ii}, i = \overline{1,n} \\ c_{ij} = 0, i \ne j



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment