let:
A = [ a 11 0 0 … 0 0 a 22 0 … 0 … … … … … 0 … 0 0 a n n ] A = \begin{bmatrix}
a_{11} & 0 & 0 & \ldots & 0 \\
0 & a_{22} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & 0 & a_{nn}
\end{bmatrix} A = ⎣ ⎡ a 11 0 … 0 0 a 22 … … 0 0 … 0 … … … 0 0 0 … a nn ⎦ ⎤
B = [ b 11 0 0 … 0 0 b 22 0 … 0 … … … … … 0 … 0 0 b n n ] B = \begin{bmatrix}
b_{11} & 0 & 0 & \ldots & 0 \\
0 & b_{22} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & 0 & b_{nn}
\end{bmatrix} B = ⎣ ⎡ b 11 0 … 0 0 b 22 … … 0 0 … 0 … … … 0 0 0 … b nn ⎦ ⎤
C = [ c 11 c 12 … c 1 n c 21 c 22 … c 2 n … … … … c n 1 … c n 2 c n n ] C = \begin{bmatrix}
c_{11} & c_{12} & \ldots & c_{1n} \\
c_{21} & c_{22} & \ldots & c_{2n} \\
\ldots & \ldots & \ldots & \ldots \\
c_{n1} & \ldots & c_{n2} & c_{nn}
\end{bmatrix} C = ⎣ ⎡ c 11 c 21 … c n 1 c 12 c 22 … … … … … c n 2 c 1 n c 2 n … c nn ⎦ ⎤
Then:
c 11 = a 11 ⋅ b 11 + 0 ⋅ 0 + … + 0 ⋅ 0 = a 11 ⋅ b 11 c 12 = a 11 ⋅ 0 + 0 ⋅ b 22 + … + 0 ⋅ 0 = 0 … c 1 n = a 11 ⋅ 0 + 0 ⋅ 0 + … + 0 ⋅ b n n = 0 c_{11} = a_{11} \cdot b_{11} + 0 \cdot 0 + \ldots + 0 \cdot 0 = a_{11} \cdot b_{11} \\
c_{12} = a_{11} \cdot 0 + 0 \cdot b_{22} + \ldots + 0 \cdot 0 = 0 \\
\ldots \\
c_{1n} = a_{11} \cdot 0 + 0 \cdot 0 + \ldots + 0 \cdot b_{nn}= 0 \\ c 11 = a 11 ⋅ b 11 + 0 ⋅ 0 + … + 0 ⋅ 0 = a 11 ⋅ b 11 c 12 = a 11 ⋅ 0 + 0 ⋅ b 22 + … + 0 ⋅ 0 = 0 … c 1 n = a 11 ⋅ 0 + 0 ⋅ 0 + … + 0 ⋅ b nn = 0
c 21 = 0 ⋅ b 11 + a 22 ⋅ 0 + … + 0 ⋅ 0 = 0 c 22 = 0 ⋅ 0 + a 22 ⋅ b 22 + 0 ⋅ 0 + … + 0 ⋅ 0 = a 22 ⋅ b 22 … c 2 n = 0 ⋅ 0 + a 22 ⋅ 0 + … + 0 ⋅ 0 + 0 ⋅ b n n = 0 c_{21} = 0 \cdot b_{11} + a_{22} \cdot 0 + \ldots + 0 \cdot 0 = 0 \\
c_{22} = 0 \cdot 0 + a_{22} \cdot b_{22} + 0 \cdot 0 + \ldots + 0 \cdot 0 = a_{22} \cdot b_{22} \\
\ldots \\
c_{2n} = 0 \cdot 0 + a_{22} \cdot 0 + \ldots + 0 \cdot 0 + 0 \cdot b_{nn}= 0 \\ c 21 = 0 ⋅ b 11 + a 22 ⋅ 0 + … + 0 ⋅ 0 = 0 c 22 = 0 ⋅ 0 + a 22 ⋅ b 22 + 0 ⋅ 0 + … + 0 ⋅ 0 = a 22 ⋅ b 22 … c 2 n = 0 ⋅ 0 + a 22 ⋅ 0 + … + 0 ⋅ 0 + 0 ⋅ b nn = 0
… … … \ldots \\
\ldots \\
\ldots \\ … … …
c n 1 = 0 ⋅ b 11 + 0 ⋅ 0 + … + a n n ⋅ 0 = 0 c n 2 = 0 ⋅ 0 + 0 ⋅ b 22 + … + a n n ⋅ 0 = 0 … c n n = 0 ⋅ 0 + … + 0 ⋅ 0 + a n n ⋅ b n n = a n n ⋅ b n n c_{n1} = 0 \cdot b_{11} + 0 \cdot 0 + \ldots + a_{nn} \cdot 0 = 0 \\
c_{n2} = 0 \cdot 0 + 0 \cdot b_{22} + \ldots + a_{nn} \cdot 0 = 0 \\
\ldots \\
c_{nn} = 0 \cdot 0 + \ldots + 0 \cdot 0 + a_{nn} \cdot b_{nn}= a_{nn} \cdot b_{nn} \\ c n 1 = 0 ⋅ b 11 + 0 ⋅ 0 + … + a nn ⋅ 0 = 0 c n 2 = 0 ⋅ 0 + 0 ⋅ b 22 + … + a nn ⋅ 0 = 0 … c nn = 0 ⋅ 0 + … + 0 ⋅ 0 + a nn ⋅ b nn = a nn ⋅ b nn
It is shown that after multiplication of matrix A and B we receive matrix C which have non-zero diagonal elements, namely: c i j = 0 , i ≠ j , c i i ≠ 0 , i = 1 , 2 , … , n c_{ij} = 0, i \ne j, c_{ii} \ne 0,i=1,2,\ldots,n c ij = 0 , i = j , c ii = 0 , i = 1 , 2 , … , n . So C is diagonal matrix.
And formula of multiplication of two diagonal matrices is:
A ⋅ B = C c i i = a i i ⋅ b i i , i = 1 , n ‾ c i j = 0 , i ≠ j A \cdot B = C \\
c_{ii} = a_{ii} \cdot b_{ii}, i = \overline{1,n} \\
c_{ij} = 0, i \ne j A ⋅ B = C c ii = a ii ⋅ b ii , i = 1 , n c ij = 0 , i = j
Comments
Leave a comment