9. Solution: The matrix A is said to be a singular, if
d e t ( A ) = 0. det(A)=0. d e t ( A ) = 0. Hence
0 = d e t ( A ) = ∣ 2 0 1 k 2 3 2 1 4 ∣ = 2 ⋅ 2 ⋅ 4 + 2 ⋅ 0 ⋅ 3 + k ⋅ 1 ⋅ 1 − 0=det(A)=\begin{vmatrix}
2 & 0 & 1 \\
k & 2 & 3 \\
2 & 1 & 4 \end{vmatrix} =2\cdot 2\cdot 4 +2 \cdot 0 \cdot 3+k \cdot 1 \cdot 1 - 0 = d e t ( A ) = ∣ ∣ 2 k 2 0 2 1 1 3 4 ∣ ∣ = 2 ⋅ 2 ⋅ 4 + 2 ⋅ 0 ⋅ 3 + k ⋅ 1 ⋅ 1 − − 2 ⋅ 2 ⋅ 1 − k ⋅ 0 ⋅ 4 − 2 ⋅ 1 ⋅ 3 = k + 6 , -2 \cdot 2 \cdot 1- k \cdot 0 \cdot 4 -2 \cdot 1 \cdot 3=k+6, − 2 ⋅ 2 ⋅ 1 − k ⋅ 0 ⋅ 4 − 2 ⋅ 1 ⋅ 3 = k + 6 , i.e. k = − 6 k=-6 k = − 6 .
Answer: d. -6
10. Solution: First find the cofactor of each element of matrix A.
A 11 = ( − 1 ) 1 + 1 ∣ 5 0 1 4 ∣ = 20 ; A 12 = ( − 1 ) 1 + 2 ∣ 4 0 2 4 ∣ = − 16 ; A_{11}={(-1)}^{1+1} \begin{vmatrix}
5 & 0 \\
1 & 4 \end{vmatrix}
=20; \ A_{12}={(-1)}^{1+2} \begin{vmatrix}
4 & 0 \\
2 & 4 \end{vmatrix}=-16; A 11 = ( − 1 ) 1 + 1 ∣ ∣ 5 1 0 4 ∣ ∣ = 20 ; A 12 = ( − 1 ) 1 + 2 ∣ ∣ 4 2 0 4 ∣ ∣ = − 16 ; A 13 = ( − 1 ) 1 + 3 ∣ 4 5 2 1 ∣ = − 6 ; A_{13}={(-1)}^{1+3} \begin{vmatrix}
4 & 5 \\
2 & 1 \end{vmatrix}
=-6; A 13 = ( − 1 ) 1 + 3 ∣ ∣ 4 2 5 1 ∣ ∣ = − 6 ;
A 21 = ( − 1 ) 2 + 1 ∣ 2 3 1 4 ∣ = − 5 ; A 22 = ( − 1 ) 2 + 2 ∣ 1 3 2 4 ∣ = − 2 ; A_{21}={(-1)}^{2+1} \begin{vmatrix}
2 & 3 \\
1 & 4 \end{vmatrix}
=-5; \
A_{22}={(-1)}^{2+2}\begin{vmatrix}
1 & 3 \\
2 & 4 \end{vmatrix}
=-2; A 21 = ( − 1 ) 2 + 1 ∣ ∣ 2 1 3 4 ∣ ∣ = − 5 ; A 22 = ( − 1 ) 2 + 2 ∣ ∣ 1 2 3 4 ∣ ∣ = − 2 ;
A 23 = ( − 1 ) 2 + 3 ∣ 1 2 2 1 ∣ = 3 ; A_{23}={(-1)}^{2+3}\begin{vmatrix}
1 & 2 \\
2 & 1 \end{vmatrix}
=3; A 23 = ( − 1 ) 2 + 3 ∣ ∣ 1 2 2 1 ∣ ∣ = 3 ;
A 31 = ( − 1 ) 3 + 1 ∣ 2 3 5 0 ∣ = − 15 ; A 32 = ( − 1 ) 3 + 2 ∣ 1 3 4 0 ∣ = 12 ; A_{31}={(-1)}^{3+1} \begin{vmatrix}
2 & 3 \\
5 & 0 \end{vmatrix}
=-15; \
A_{32}={(-1)}^{3+2} \begin{vmatrix}
1 & 3 \\
4 & 0 \end{vmatrix}
=12; A 31 = ( − 1 ) 3 + 1 ∣ ∣ 2 5 3 0 ∣ ∣ = − 15 ; A 32 = ( − 1 ) 3 + 2 ∣ ∣ 1 4 3 0 ∣ ∣ = 12 ; A 33 = ( − 1 ) 3 + 3 ∣ 1 2 4 5 ∣ = − 3. A_{33}={(-1)}^{3+3}\begin{vmatrix}
1 & 2 \\
4 & 5 \end{vmatrix}
=-3. A 33 = ( − 1 ) 3 + 3 ∣ ∣ 1 4 2 5 ∣ ∣ = − 3.
Therefore, the cofactor matrix A C A^C A C of the matrix A A A is equal to
A C = ( 20 − 16 − 6 − 5 − 2 3 − 15 12 − 3 ) . A^C=\begin{pmatrix}
20 & -16 & -6 \\
-5 & -2 & 3 \\
-15 & 12 & -3 \end{pmatrix}. A C = ⎝ ⎛ 20 − 5 − 15 − 16 − 2 12 − 6 3 − 3 ⎠ ⎞ . Answer: c. ( 20 − 16 − 6 − 5 − 2 3 − 15 12 − 3 ) \begin{pmatrix}
20 & -16 & -6 \\
-5 & -2 & 3 \\
-15 & 12 & -3 \end{pmatrix} ⎝ ⎛ 20 − 5 − 15 − 16 − 2 12 − 6 3 − 3 ⎠ ⎞ .
Comments