9. Solution: The matrix A is said to be a singular, if
"det(A)=0."Hence
i.e. "k=-6".
Answer: d. -6
10. Solution: First find the cofactor of each element of matrix A.
"A_{21}={(-1)}^{2+1} \\begin{vmatrix}\n2 & 3 \\\\\n1 & 4 \\end{vmatrix}\n=-5; \\ \nA_{22}={(-1)}^{2+2}\\begin{vmatrix}\n1 & 3 \\\\\n2 & 4 \\end{vmatrix}\n=-2;"
"A_{23}={(-1)}^{2+3}\\begin{vmatrix}\n1 & 2 \\\\\n2 & 1 \\end{vmatrix}\n=3;"
"A_{31}={(-1)}^{3+1} \\begin{vmatrix}\n2 & 3 \\\\\n5 & 0 \\end{vmatrix}\n=-15; \\ \nA_{32}={(-1)}^{3+2} \\begin{vmatrix}\n1 & 3 \\\\\n4 & 0 \\end{vmatrix}\n=12;""A_{33}={(-1)}^{3+3}\\begin{vmatrix}\n1 & 2 \\\\\n4 & 5 \\end{vmatrix}\n=-3."
Therefore, the cofactor matrix "A^C" of the matrix "A" is equal to
Answer: c. "\\begin{pmatrix}\n\n20 & -16 & -6 \\\\\n\n-5 & -2 & 3 \\\\\n\n-15 & 12 & -3 \\end{pmatrix}" .
Comments
Leave a comment