9. Solution: The matrix A is said to be a singular, if
det(A)=0. Hence
0=det(A)=∣∣2k2021134∣∣=2⋅2⋅4+2⋅0⋅3+k⋅1⋅1−−2⋅2⋅1−k⋅0⋅4−2⋅1⋅3=k+6, i.e. k=−6.
Answer: d. -6
10. Solution: First find the cofactor of each element of matrix A.
A11=(−1)1+1∣∣5104∣∣=20; A12=(−1)1+2∣∣4204∣∣=−16;A13=(−1)1+3∣∣4251∣∣=−6;
A21=(−1)2+1∣∣2134∣∣=−5; A22=(−1)2+2∣∣1234∣∣=−2;
A23=(−1)2+3∣∣1221∣∣=3;
A31=(−1)3+1∣∣2530∣∣=−15; A32=(−1)3+2∣∣1430∣∣=12;A33=(−1)3+3∣∣1425∣∣=−3.
Therefore, the cofactor matrix AC of the matrix A is equal to
AC=⎝⎛20−5−15−16−212−63−3⎠⎞. Answer: c. ⎝⎛20−5−15−16−212−63−3⎠⎞ .
Comments