a) If p1(x)∈P(e) and p2(x)∈P(e) and if α,β∈R, then
p(x)≡αp1(x)+βp2(x)=αp1(−x)+βp2(−x)=p(−x), so that p(x)∈P(e). Similarly, if p1(x)∈P(o) and p2(x)∈P(o), then
p(x)≡αp1(x)+βp2(x)=−αp1(−x)−βp2(−x)=−p(−x),so that p(x)∈P(o). This means that P(e) and P(o) are linear subspaces of R[x].
b) Let p(x)=∑iaixi∈P(e). Then p(x)=p(−x), so that
i∑aixi=p(x)=21[p(x)+p(−x)]=21[i∑aixi+i∑ai(−1)ixi]=21i∑ai[1+(−1)i]xi.Equating the coefficients on the left-hand side and on the right-hand side, we have
ai=21ai[1+(−1)i],placing no restriction on ai if i is even, and implying ai=0 if i is odd. Hence,
P(e)={i∑aixi∈R[x],ai=0 if i is odd}.
Let p(x)=∑iaixi∈P(o). Then p(x)=−p(−x), so that
i∑aixi=p(x)=21[p(x)−p(−x)]=21[i∑aixi−i∑ai(−1)ixi]=21i∑ai[1−(−1)i]xi. Equating the coefficients on the left-hand side and on the right-hand side, we have
ai=21ai[1−(−1)i], placing no restriction on ai if i is odd, and implying ai=0 if i is even. Hence,
P(o)={i∑aixi∈R[x],ai=0 if i is even}.The space P(e)∩P(o) consists of p(x)=∑iaixi∈R[x] such that ai=0 for i both odd and even, hence, for all i. Thus, P(e)∩P(o)={0}.
c) We have q(x)=p(x)+p(−x)=p(−x)+p(x)=q(−x)∈P(e) for every p(x)∈R[x].
If p1(x),p2(x)∈R[x] and α,β∈R, then
ψ(αp1(x)+βp2(x))=21(αp1(x)+βp2(x)+αp1(−x)+βp2(−x))=21(αp1(x)+αp1(−x))+21(βp2(x)+βp2(−x))=α21(p1(x)+p1(−x))+β21(p2(x)+p2(−x))=αψ(p1(x))+βψ(p2(x)).This demonstrates that ψ(p(x)) is a linear map.
Further, we have
ψ2(p(x))=ψ(21(p(x)+p(−x)))=21(21(p(x)+p(−x))+21(p(−x)+p(x)))=21(p(x)+p(−x))=ψ(p(x)).Thus, ψ2=ψ.
The kernel of ψ is the subspace formed by p(x)∈R[x] such that ψ(p(x))=0. The last condition is equivalent to p(x)+p(−x)=0, or p(−x)=−p(x). Hence, the kernel of ψ is the subspace P(o), kerψ=P(o).
Comments