Question #87108
Let P superscript (e) ={p(x)∈R[x]|p(x) = p(−x)} P superscript(o) ={p(x)∈R[x]|p(x) =−p(−x)} a) Check that P superscript (e) and P superscript (o) are subspace of R[x]. b) Show that P superscript (e) =(∑ i a subscript i x superscript i ∈R[x]



a subscript = 0 if i is odd.) P superscript(o) =(∑ i a subscript i x superscript i ∈R[x]



a subscript = 0 if i is even.) Deduce that P superscript (o)∩P superscript (e) ={0}. ( c) Check p(x)+p(−x)∈P superscript(e) for every p(x)∈R(x). Check that the map ψ: R[x]→P superscript(e) given byψ(p(x)) = p(x)+p(−x)/ 2 is a linear map. Further, check that ψ superscript 2 =ψ. Determine the kernel of ψ
1
Expert's answer
2019-03-27T11:39:11-0400

a) If p1(x)P(e)p_1 (x) \in P^{(e)} and p2(x)P(e)p_2 (x) \in P^{(e)} and if α,βR\alpha, \beta \in \R, then

p(x)αp1(x)+βp2(x)=αp1(x)+βp2(x)=p(x),p (x) \equiv \alpha p_1 (x) + \beta p_2 (x) = \alpha p_1 (- x) + \beta p_2 (- x) = p (-x) ,

so that p(x)P(e)p (x) \in P^{(e)}. Similarly, if p1(x)P(o)p_1 (x) \in P^{(o)} and p2(x)P(o)p_2 (x) \in P^{(o)}, then

p(x)αp1(x)+βp2(x)=αp1(x)βp2(x)=p(x),p (x) \equiv \alpha p_1 (x) + \beta p_2 (x) \\ {} = - \alpha p_1 (- x) - \beta p_2 (- x) = - p (-x) \, ,

so that p(x)P(o)p (x) \in P^{(o)}. This means that P(e)P^{(e)} and P(o)P^{(o)} are linear subspaces of R[x]\R [x].


b) Let p(x)=iaixiP(e)p (x) = \sum_i a_i x^i \in P^{(e)}. Then p(x)=p(x)p(x) = p(-x), so that

iaixi=p(x)=12[p(x)+p(x)]=12[iaixi+iai(1)ixi]=12iai[1+(1)i]xi.\sum_i a_i x^i = p(x) = \frac12 \left[ p(x) + p (-x) \right] \\ {} = \frac12 \left[ \sum_i a_i x^i + \sum_i a_i (- 1)^i x^i \right] \\ {} = \frac12 \sum_i a_i \left[ 1 + (-1)^i \right] x^i \, .

Equating the coefficients on the left-hand side and on the right-hand side, we have

ai=12ai[1+(1)i],a_i = \frac12 a_i \left[ 1 + (-1)^i \right] \, ,

placing no restriction on aia_i if ii is even, and implying ai=0a_i = 0 if ii is odd. Hence,

P(e)={iaixiR[x],ai=0 if i is odd}.P^{(e)} = \left\{ \sum_i a_i x^i \in \R [x] \, , a_i = 0 ~ \text{if}~ i ~ \text{is odd} \right\} \, .


Let p(x)=iaixiP(o)p (x) = \sum_i a_i x^i \in P^{(o)}. Then p(x)=p(x)p (x) = - p (-x), so that

iaixi=p(x)=12[p(x)p(x)]=12[iaixiiai(1)ixi]=12iai[1(1)i]xi.\sum_i a_i x^i = p(x) = \frac12 \left[ p(x) - p (-x) \right] \\ {} = \frac12 \left[ \sum_i a_i x^i - \sum_i a_i (- 1)^i x^i \right] \\ {} = \frac12 \sum_i a_i \left[ 1 - (-1)^i \right] x^i \, .

Equating the coefficients on the left-hand side and on the right-hand side, we have

ai=12ai[1(1)i],a_i = \frac12 a_i \left[ 1 - (-1)^i \right] \, ,

placing no restriction on aia_i if ii is odd, and implying ai=0a_i = 0 if ii is even. Hence,

P(o)={iaixiR[x],ai=0 if i is even}.P^{(o)} = \left\{ \sum_i a_i x^i \in \R [x] \, , a_i = 0 ~ \text{if}~ i ~ \text{is even} \right\} \, .

The space P(e)P(o)P^{(e)} \cap P^{(o)} consists of p(x)=iaixiR[x]p (x) = \sum_i a_i x^i \in \R[x] such that ai=0a_i = 0 for ii both odd and even, hence, for all ii. Thus, P(e)P(o)={0}P^{(e)} \cap P^{(o)} = \{ 0 \}.


c) We have q(x)=p(x)+p(x)=p(x)+p(x)=q(x)P(e)q (x) = p (x) + p (-x) = p (-x) + p(x) = q (-x) \in P^{(e)} for every p(x)R[x]p (x) \in \R [x].


If p1(x),p2(x)R[x]p_1 (x), p_2 (x) \in \R [x] and α,βR\alpha , \beta \in \R, then

ψ(αp1(x)+βp2(x))=12(αp1(x)+βp2(x)+αp1(x)+βp2(x))=12(αp1(x)+αp1(x))+12(βp2(x)+βp2(x))=α12(p1(x)+p1(x))+β12(p2(x)+p2(x))=αψ(p1(x))+βψ(p2(x)).\psi \left( \alpha p_1 (x) + \beta p_2 (x) \right) \\ {} = \frac12 \left( \alpha p_1 (x) + \beta p_2 (x) + \alpha p_1 (-x) + \beta p_2 (-x) \right) \\ {} = \frac12 \left( \alpha p_1 (x) + \alpha p_1 (-x) \right) + \frac12 \left( \beta p_2 (x) + \beta p_2 (-x) \right) \\ {} = \alpha \frac12 \left( p_1 (x) + p_1 (-x) \right) + \beta \frac12 \left( p_2 (x) + p_2 (-x) \right) \\ {} = \alpha \psi \left( p_1 (x) \right) + \beta \psi \left( p_2 (x) \right) \, .

This demonstrates that ψ(p(x))\psi \left( p (x) \right) is a linear map.


Further, we have

ψ2(p(x))=ψ(12(p(x)+p(x)))=12(12(p(x)+p(x))+12(p(x)+p(x)))=12(p(x)+p(x))=ψ(p(x)).\psi^2 \left( p(x) \right) = \psi \left( \frac12 \left( p(x) + p(-x) \right) \right) \\ {} = \frac12 \left( \frac12 \left( p(x) + p(-x) \right) + \frac12 \left( p(-x) + p(x) \right) \right) \\ {} = \frac12 \left( p(x) + p(-x) \right) = \psi \left( p(x) \right) \, .

Thus, ψ2=ψ\psi^2 = \psi.


The kernel of ψ\psi is the subspace formed by p(x)R[x]p (x) \in \R[x] such that ψ(p(x))=0.\psi \left( p (x) \right) = 0. The last condition is equivalent to p(x)+p(x)=0p (x) + p (-x) = 0, or p(x)=p(x)p (-x) = - p (x). Hence, the kernel of ψ\psi is the subspace P(o)P^{(o)}, kerψ=P(o){\rm ker}\, \psi = P^{(o)}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS