Question #87070
Check whether the matrices A and B are diagonalisable. Diagonalise those matrices which are diagonalisable. i) A =  1 0 0
1 2 −3
1 1 −2  
ii) B =  −2 −4 −1
3 5 1
1 1 2 .b) Find inverse of the matrix B in part a) of the question by using Cayley-Hamiltion theorem. c) Find the inverse of the matrix A in part a) of the question by finding its adjoint.
1
Expert's answer
2019-03-27T12:42:45-0400
A=[100123112],B=[241351112]A=\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & -3 \\ 1 & 1 & -2 \\ \end{bmatrix} , B=\begin{bmatrix} -2 & -4 & -1 \\ 3 & 5 & 1 \\ 1 & 1 & 2 \\ \end{bmatrix}

We first determine the eigenvalues of the matrix A


A=1(2(2)(3)(1))0+0=1|A|=1(2(-2)-(-3)(1))-0+0=-1AλI=[1λ0012λ3112λ]A-\lambda I=\begin{bmatrix} 1-\lambda & 0 & 0 \\ 1 & 2-\lambda & -3 \\ 1 & 1 & -2-\lambda \\ \end{bmatrix}

Characteristic equation


AλI=0|A-\lambda I|=0(1λ)((2λ)(2λ)(3)(1))0+0=0(1-\lambda)((2-\lambda)(-2-\lambda)-(-3)(1))-0+0=0(1λ)2(1+λ)=0-(1-\lambda)^2(1+\lambda)=0λ1=1,λ2=1,λ3=1.\lambda_1=1, \lambda_2=1, \lambda_3=-1.

These are eigenvalues.

Next, find the eigenvectors.


λ=1\lambda=1[1λ0012λ3112λ]=[000113113]\begin{bmatrix} 1-\lambda & 0 & 0 \\ 1 & 2-\lambda & -3 \\ 1 & 1 & -2-\lambda \\ \end{bmatrix} =\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & -3 \\ 1 & 1 & -3 \\ \end{bmatrix}

Perform row operations to obtain the rref of the matrix:


[000113113][113000000]\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & -3 \\ 1 & 1 & -3 \\ \end{bmatrix} \to \begin{bmatrix} 1 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}

Now, solve the matrix equation


[113000000][v1v2v3]=[000]\begin{bmatrix} 1 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \end{bmatrix} =\begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix}

If we take


v2=t,v3=s,then v1=3st.v_2=t, v_3=s, then\ v_1=3s-t.

Therefore


v=[3stt3]=[110]t+[301]sv=\begin{bmatrix} 3s-t \\ t \\ 3 \\ \end{bmatrix} =\begin{bmatrix} -1 \\ 1 \\ 0 \\ \end{bmatrix}t +\begin{bmatrix} 3 \\ 0 \\ 1 \\ \end{bmatrix}s

λ=1\lambda=-1[1λ0012λ3112λ]=[200133111]\begin{bmatrix} 1-\lambda & 0 & 0 \\ 1 & 2-\lambda & -3 \\ 1 & 1 & -2-\lambda \\ \end{bmatrix} =\begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & -3 \\ 1 & 1 & -1 \\ \end{bmatrix}

Perform row operations to obtain the rref of the matrix:


[200133111][100011000]\begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & -3 \\ 1 & 1 & -1 \\ \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ \end{bmatrix}

Now, solve the matrix equation


[100011000][v1v2v3]=[000]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \end{bmatrix} =\begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix}

If we take


v3=t,then v1=0,v2=t.v_3=t, then\ v_1=0, v_2=t.

Therefore


v=[0tt]=[011]tv=\begin{bmatrix} 0 \\ t \\ t \\ \end{bmatrix} =\begin{bmatrix} 0 \\ 1 \\ 1 \\ \end{bmatrix}t

Form the matrix P, whose i-th column is the i-th eigenvector:


P=[130101011]P=\begin{bmatrix} -1 & 3 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ \end{bmatrix}

Form the diagonal matrix D, whose element at row i, column i is i-th eigenvalue:


D=[100010001]D=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ \end{bmatrix}

These matrices have the property that 


A=PDP1A=PDP^{-1}

We first determine the eigenvalues of the matrix B


B=2(5(2)(1)(1))+4(3(2)(1)(1))1(3(1)(1)(5))=4|B|=-2(5(2)-(1)(1))+4(3(2)-(1)(1))-1(3(1)-(1)(5))=4BλI=[2λ4135λ1112λ]B-\lambda I=\begin{bmatrix} -2-\lambda & -4 & -1 \\ 3 & 5-\lambda & 1 \\ 1 & 1 & 2-\lambda \\ \end{bmatrix}

Characteristic equation


BλI=0|B-\lambda I|=0(2λ)(5λ)(2λ)34+(5λ)(2λ)+12(2λ)=0(-2-\lambda)(5-\lambda)(2-\lambda)-3-4+(5-\lambda)-(-2-\lambda)+12(2-\lambda)=0(λ)3+5(λ)28λ+4=0-(\lambda)^3+5(\lambda)^2-8\lambda+4=0λ1=1,λ2=2,λ3=2.\lambda_1=1, \lambda_2=2, \lambda_3=2.

These are eigenvalues.

Next, find the eigenvectors.


λ=1\lambda=1[2λ4135λ1112λ]=[341341111]\begin{bmatrix} -2-\lambda & -4 & -1 \\ 3 & 5-\lambda & 1 \\ 1 & 1 & 2-\lambda \\ \end{bmatrix} =\begin{bmatrix} -3 & -4 & -1 \\ 3 & 4 & 1 \\ 1 & 1 & 1 \\ \end{bmatrix}

Perform row operations to obtain the rref of the matrix:


[341341111][103012000]\begin{bmatrix} -3 & -4 & -1 \\ 3 & 4 & 1 \\ 1 & 1 & 1 \\ \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ \end{bmatrix}

Now, solve the matrix equation


[103012000][v1v2v3]=[000]\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \end{bmatrix} =\begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix}

If we take


v3=t,then v1=3t,v2=2t.v_3=t, then\ v_1=-3t, v_2=2t.

Therefore


v=[3t2tt]=[321]tv=\begin{bmatrix} -3t \\ 2t \\ t \\ \end{bmatrix} =\begin{bmatrix} -3 \\ 2 \\ 1 \\ \end{bmatrix}t

λ=2\lambda=2[2λ4135λ1112λ]=[441331110]\begin{bmatrix} -2-\lambda & -4 & -1 \\ 3 & 5-\lambda & 1 \\ 1 & 1 & 2-\lambda \\ \end{bmatrix} =\begin{bmatrix} -4 & -4 & -1 \\ 3 & 3 & 1 \\ 1 & 1 & 0 \\ \end{bmatrix}

Perform row operations to obtain the rref of the matrix:


[441331110][110001000]\begin{bmatrix} -4 & -4 & -1 \\ 3 & 3 & 1 \\ 1 & 1 & 0 \\ \end{bmatrix} \to \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{bmatrix}

Now, solve the matrix equation


[110001000][v1v2v3]=[000]\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \end{bmatrix} =\begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix}

If we take


v2=t,then v1=t,v3=0.v_2=t, then\ v_1=-t, v_3=0.

Therefore


v=[tt0]=[110]tv=\begin{bmatrix} -t \\ t \\ 0 \\ \end{bmatrix} =\begin{bmatrix} -1 \\ 1 \\ 0 \\ \end{bmatrix}t

Since the number of eigenvectors is less than dimension of the matrix, then the matrix is not diagonalizable.

The matrix B is not diagonalizable.


b) Find inverse of the matrix B in part a) of the question by using Cayley-Hamiltion theorem.


B=[241351112]B=\begin{bmatrix} -2 & -4 & -1 \\ 3 & 5 & 1 \\ 1 & 1 & 2 \\ \end{bmatrix}

B=2(5(2)(1)(1))+4(3(2)(1)(1))1(3(1)(1)(5))=4/=0|B|=-2(5(2)-(1)(1))+4(3(2)-(1)(1))-1(3(1)-(1)(5))=4\mathrlap{\,/}{=}0


We have


BλI=[2λ4135λ1112λ]B-\lambda I=\begin{bmatrix} -2-\lambda & -4 & -1 \\ 3 & 5-\lambda & 1 \\ 1 & 1 & 2-\lambda \\ \end{bmatrix}

p(λ)=BλI=p(\lambda)=|B-\lambda I|=

=(2λ)(5λ)(2λ)34+(5λ)(2λ)+12(2λ)==(-2-\lambda)(5-\lambda)(2-\lambda)-3-4+(5-\lambda)-(-2-\lambda)+12(2-\lambda)=

=(λ)3+5(λ)28λ+4=-(\lambda)^3+5(\lambda)^2-8\lambda+4

Thus, we have obtained the characteristic polynomial


p(λ)=(λ)3+5(λ)28λ+4p(\lambda)=-(\lambda)^3+5(\lambda)^2-8\lambda+4

of the matrix B.

The Cayley-Hamilton theorem yields that


0=p(B)=B3+5B28B+4I0=p(B)=-B^3+5B^2-8B+4I

where O is the 3×3 zero matrix.

Rearranging terms, we have


B35B2+8B=4IB^3-5B^2+8B=4IB(14(B25B+8I))=IB({1 \over 4}(B^2-5B+8I))=I

Similarly, we have


(14(B25B+8I))B=I({1 \over 4}(B^2-5B+8I))B=I

It follows from these two equalities that the matrix


14(B25B+8I){1 \over 4}(B^2-5B+8I)

is the inverse matrix of B.

Therefore, we have


B1=14(B25B+8I)B^{-1}={1 \over 4}(B^2-5B+8I)

B2=[241351112][241351112]=B^2=\begin{bmatrix} -2 & -4 & -1 \\ 3 & 5 & 1 \\ 1 & 1 & 2 \\ \end{bmatrix}\begin{bmatrix} -2 & -4 & -1 \\ 3 & 5 & 1 \\ 1 & 1 & 2 \\ \end{bmatrix}=

=[91341044334]=\begin{bmatrix} -9 & -13 & -4 \\ 10 & 4 & 4 \\ 3 & 3 & 4 \\ \end{bmatrix}

B25B+8I=[91341044334]5[241351112]+B^2-5B+8I=\begin{bmatrix} -9 & -13 & -4 \\ 10 & 4 & 4 \\ 3 & 3 & 4 \\ \end{bmatrix}-5\begin{bmatrix} -2 & -4 & -1 \\ 3 & 5 & 1 \\ 1 & 1 & 2 \\ \end{bmatrix}+

+8[100010001]=[971531222]+8\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}=\begin{bmatrix} 9 & 7 & 1 \\ -5 & -3 & -1 \\ -2 & -2 & 2 \\ \end{bmatrix}

Then the inverse matrix of B is


B1=[9/47/41/45/43/41/41/21/21/2]B^{-1}=\begin{bmatrix} 9/4 & 7/4 & 1/4 \\ -5/4 & -3/4 & -1/4 \\ -1/2 & -1/2 & 1/2 \\ \end{bmatrix}



c) Find the inverse of the matrix A in part a) of the question by finding its adjoint.


B=[241351112]B=\begin{bmatrix} -2 & -4 & -1 \\ 3 & 5 & 1 \\ 1 & 1 & 2 \\ \end{bmatrix}B=2(5(2)(1)(1))+4(3(2)(1)(1))1(3(1)(1)(5))=4/=0|B|=-2(5(2)-(1)(1))+4(3(2)-(1)(1))-1(3(1)-(1)(5))=4\mathrlap{\,/}{=}0


C11=5112=9,C12=3112=5,C13=3511=2,C_{11}=\begin{vmatrix} 5 & 1 \\ 1 & 2 \end{vmatrix}=9, C_{12}=-\begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix}=-5, C_{13}=\begin{vmatrix} 3 & 5 \\ 1 & 1 \end{vmatrix}=-2,




C21=4112=7,C22=2112=3,C23=2411=2,C_{21}=-\begin{vmatrix} -4 & -1 \\ 1 & 2 \end{vmatrix}=7, C_{22}=\begin{vmatrix} -2 & -1 \\ 1 & 2 \end{vmatrix}=-3, C_{23}=-\begin{vmatrix} -2 & -4 \\ 1 & 1 \end{vmatrix}=-2,




C31=4151=1,C32=2131=1,C33=2435=2.C_{31}=\begin{vmatrix} -4 & -1 \\ 5 & 1 \end{vmatrix}=1, C_{32}=-\begin{vmatrix} -2 & -1 \\ 3 & 1 \end{vmatrix}=-1, C_{33}=\begin{vmatrix} -2 & -4 \\ 3 & 5 \end{vmatrix}=2.

Adj(B)=CT=[971531222]Adj(B)=C^T=\begin{bmatrix} 9 & 7 & 1 \\ -5 & -3 & -1 \\ -2 & -2 & 2 \\ \end{bmatrix}

B1=1BCT=[9/47/41/45/43/41/41/21/21/2]B^{-1}={1 \over {|B|}}C^T=\begin{bmatrix} 9/4 & 7/4 & 1/4 \\ -5/4 & -3/4 & -1/4 \\ -1/2 & -1/2 & 1/2 \\ \end{bmatrix}


B1=[9/47/41/45/43/41/41/21/21/2]B^{-1}=\begin{bmatrix} 9/4 & 7/4 & 1/4 \\ -5/4 & -3/4 & -1/4 \\ -1/2 & -1/2 & 1/2 \\ \end{bmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS