Geometrically representation of basis of v=(3,4) when v1(1,0) v2(0,1) v=av1+bv2
1
Expert's answer
2012-04-03T08:34:44-0400
v=av1+bv2 Let's denote v={xv,yv} Then xv=a*xv1+b*xv2 yv=a*yv1+b*yv2 Substitute corrdinates of v1,v2: xv=a*1+b*0=3 yv=a*0+b*1=4 These two equations allow us to find a and b: a*1+b*0=3 => a=3
Comments
Leave a comment