Question #345562

Find an expression for a square matrix A satisfying A squared

= In, where In is the n × n identity matrix. Give 3

examples for the case n = 3. 


1
Expert's answer
2022-06-01T03:33:07-0400

Matrix AA is an involutory matrix, if A2=InA^2=I_n .

There is no formula for this type matrix, but there many examples.

All matrix A=(±10000±10000±1000000±1)A=\begin{pmatrix} \pm 1 &0&0&…&0 \\ 0& \pm1&0&…&0 \\ 0&0&\pm1&…&0 \\ \vdots &\vdots &\vdots& \ddots &0 \\ 0&0&0&0&\pm1 \end{pmatrix} satisfy A2=InA^2=I_n .


Examples of 3×33\times 3 matrices:

A=(100010001)A=\begin{pmatrix} 1&0&0\\0&1&0\\0&0&1 \end{pmatrix}

B=(100010001)B=\begin{pmatrix} -1&0&0\\0&1&0\\0&0&-1 \end{pmatrix}

C=(100001010)C=\begin{pmatrix} 1&0&0\\0&0&-1\\0&-1&0 \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS