Find an expression for a square matrix A satisfying A squared
= In, where In is the n × n identity matrix. Give 3
examples for the case n = 3.
Matrix AAA is an involutory matrix, if A2=InA^2=I_nA2=In .
There is no formula for this type matrix, but there many examples.
All matrix A=(±100…00±10…000±1…0⋮⋮⋮⋱00000±1)A=\begin{pmatrix} \pm 1 &0&0&…&0 \\ 0& \pm1&0&…&0 \\ 0&0&\pm1&…&0 \\ \vdots &\vdots &\vdots& \ddots &0 \\ 0&0&0&0&\pm1 \end{pmatrix}A=⎝⎛±100⋮00±10⋮000±1⋮0………⋱00000±1⎠⎞ satisfy A2=InA^2=I_nA2=In .
Examples of 3×33\times 33×3 matrices:
A=(100010001)A=\begin{pmatrix} 1&0&0\\0&1&0\\0&0&1 \end{pmatrix}A=⎝⎛100010001⎠⎞
B=(−10001000−1)B=\begin{pmatrix} -1&0&0\\0&1&0\\0&0&-1 \end{pmatrix}B=⎝⎛−10001000−1⎠⎞
C=(10000−10−10)C=\begin{pmatrix} 1&0&0\\0&0&-1\\0&-1&0 \end{pmatrix}C=⎝⎛10000−10−10⎠⎞
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments