Solve for the determinant in the equation below. (10)
1.7.1.
4 −3 2
1 2 −2
2 −1 −4
1.7.2
2 −2 1
2 2 1
4 1 3
1.7.1.
Let's solve for the determinant:
"\\begin{vmatrix}\n 4 & -3 & 2 \\\\\n 1 & 2 & -2 \\\\\n 2 & -1 & -4\n\\end{vmatrix}" = 4*2*(-4) + 1*(-1)*2 + (-3)*(-2)*2 - (2*2*2 + (-3)*1*(-4) + (-2)*(-1)*4) = -50
Answer: the determinant is equal to -50.
1.7.2.
Let's solve for the determinant:
"\\begin{vmatrix}\n 2 & -2 & 1 \\\\\n 2 & 2 & 1 \\\\\n 4 & 1 & 3\n\\end{vmatrix}" = 2*2*3 + 4*(-2)*1 + 2*1*1 - (4*2*1 + 2*(-2)*3 + 2*1*1) =8
Answer: the determinant is equal to 8.
Comments
Leave a comment