Check whether 𝑇 ∶ ℝ2 → ℝ2
, defined by 𝑇 (𝑥, 𝑦) = (−𝑦, 𝑥) is a linear transformation.
A linear transformation (or a linear map) is a function "\ud835\udc47 \u2236 \u211d^2 \u2192 \u211d^2" that satisfies the following properties:
"T(\\alpha a)=\\alpha T(a)"
for any vectors "a, b\\in \\R^2" and any scalar "\\alpha\\in \\R."
Let "a=(x_1, y_1), b=(x_2, y_2)." Then
"T(b)=(-y_2, x_2)"
"T(a+b)=(-(y_1+y_2), x_1+x_2)"
"=(-y_1, x_1)+(-y_2, x_2)=T(a)+T(b), True"
"T(\\alpha a)=(-\\alpha y_1,\\alpha x_1)=\\alpha(-y_1, x_1)"
"=\\alpha T(a), True"
Therefore a linear transformation "\ud835\udc47 \u2236 \u211d^2 \u2192 \u211d^2"defined by "T(x, y)=(-y,x)" is a linear transformation.
Comments
Leave a comment