Question #342820

Check whether 𝑇 ∶ ℝ2 → ℝ2




, defined by 𝑇 (𝑥, 𝑦) = (−𝑦, 𝑥) is a linear transformation.

1
Expert's answer
2022-05-20T07:54:40-0400

A linear transformation (or a linear map) is a function 𝑇R2R2𝑇 ∶ ℝ^2 → ℝ^2 that satisfies the following properties:


T(a+b)=T(a)+T(b)T(a+b)=T(a)+T(b)

T(αa)=αT(a)T(\alpha a)=\alpha T(a)

for any vectors  a,bR2a, b\in \R^2 and any scalar αR.\alpha\in \R.

Let a=(x1,y1),b=(x2,y2).a=(x_1, y_1), b=(x_2, y_2). Then


T(a)=(y1,x1)T(a)=(-y_1, x_1)

T(b)=(y2,x2)T(b)=(-y_2, x_2)

T(a+b)=((y1+y2),x1+x2)T(a+b)=(-(y_1+y_2), x_1+x_2)

=(y1,x1)+(y2,x2)=T(a)+T(b),True=(-y_1, x_1)+(-y_2, x_2)=T(a)+T(b), True

T(αa)=(αy1,αx1)=α(y1,x1)T(\alpha a)=(-\alpha y_1,\alpha x_1)=\alpha(-y_1, x_1)

=αT(a),True=\alpha T(a), True

Therefore a linear transformation 𝑇R2R2𝑇 ∶ ℝ^2 → ℝ^2defined by T(x,y)=(y,x)T(x, y)=(-y,x) is a linear transformation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS