A linear transformation (or a linear map) is a function T∶R2→R2 that satisfies the following properties:
T(a+b)=T(a)+T(b)
T(αa)=αT(a) for any vectors a,b∈R2 and any scalar α∈R.
Let a=(x1,y1),b=(x2,y2). Then
T(a)=(−y1,x1)
T(b)=(−y2,x2)
T(a+b)=(−(y1+y2),x1+x2)
=(−y1,x1)+(−y2,x2)=T(a)+T(b),True
T(αa)=(−αy1,αx1)=α(−y1,x1)
=αT(a),True
Therefore a linear transformation T∶R2→R2defined by T(x,y)=(−y,x) is a linear transformation.
Comments