Question #340436

Determine whether the polynomial x²+2y²+4xy+2yz+6xz is a quadratic form and if so write it in the form X^T AX, where A is a symmetric matrix.

1
Expert's answer
2022-05-16T11:29:39-0400

By definition, quadratic form is a polynomial with terms all of degree two. Thus, p=x2+2y2+4xy+2yz+6xzp=x^2+2y^2+4xy+2yz+6xz is a quadratic form. Denote:X=(xyz)X=\left(\begin{array}{ll}x\\y\\z \end{array}\right). The aim is to find the matrix A=(a11a12a13a12a22a23a13a23a33)A=\left(\begin{array}{lll}a_{11}&a_{12}&a_{13}\\a_{12}&a_{22}&a_{23}\\a_{13}&a_{23}&a_{33}\end{array}\right) satisfying p=(xyz)(a11a12a13a12a22a23a13a23a33)(xyz)p=(x\,\,y\,\,z)\left(\begin{array}{lll}a_{11}&a_{12}&a_{13}\\a_{12}&a_{22}&a_{23}\\a_{13}&a_{23}&a_{33}\end{array}\right)\left(\begin{array}{ll}x\\y\\z \end{array}\right).

The right side of the latter equality is: 2xya12+2xza13+2yza23+a11x2+a22y2+a33z22xya_{12}+2xza_{13}+2yza_{23}+a_{11}x^2+a_{22}y^2+a_{33}z^2.

By comparing the coefficients of the latter expression and pp, we get: a11=1a_{11}=1, a12=2a_{12}=2, a13=3a_{13}=3, a22=2a_{22}=2, a23=1a_{23}=1, a33=0.a_{33}=0. Thus, A=(123221310)A=\left(\begin{array}{lll}1&2&3\\2&2&1\\3&1&0\end{array}\right).

Answer: p=x2+2y2+4xy+2yz+6xzp=x^2+2y^2+4xy+2yz+6xz can be presented as: p=XAXp=X^{\top}AX, where X=(xyz)X=\left(\begin{array}{ll}x\\y\\z \end{array}\right), A=(123221310)A=\left(\begin{array}{lll}1&2&3\\2&2&1\\3&1&0\end{array}\right).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS