Answer to Question #339458 in Linear Algebra for Gech

Question #339458

inverse of 1 2 3

4 5 3

7 8 9


1
Expert's answer
2022-05-15T17:12:46-0400

The inverse of matrix A can be computed using the inverse of matrix formula, by dividing the adjoint of a matrix by the determinant of the matrix.

For a matrix A, its inverse

A1=1/AAdjAA^{-1}=1/|A| Adj A

A=1(1)1+15389+2(1)1+24379+3(1)1+34578=|A|=1(-1)^{1+1}\begin{vmatrix} 5 & 3 \\ 8 & 9 \end{vmatrix} +2(-1)^{1+2}\begin{vmatrix} 4 & 3 \\ 7 & 9 \end{vmatrix} +3(-1)^{1+3}\begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} =

=45242(3621)+3(3235)=2172+42+96105=18=45-24-2(36-21)+3(32-35)=21-72+42+96-105=-18

AdjA=Transpose of its cofactor matrix

C=(+53894379+45782389+13791278+23531343+1245)C=\begin{pmatrix} +\begin{vmatrix} 5 & 3 \\ 8 & 9 \end{vmatrix}& -\begin{vmatrix} 4 & 3 \\ 7 & 9 \end{vmatrix} & +\begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} \\ -\begin{vmatrix} 2& 3 \\ 8 & 9 \end{vmatrix}& +\begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} & -\begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix}\\ +\begin{vmatrix} 2& 3 \\ 5 & 3 \end{vmatrix} & -\begin{vmatrix} 1 & 3 \\ 4 & 3 \end{vmatrix} &+\begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} \end{pmatrix} =(211536126993)=\begin{pmatrix} 21 & -15 &-3 \\ 6 & -12&6\\ -9 & 9&-3 \end{pmatrix}

AdjA=(216915129363)AdjA=\begin{pmatrix} 21 & 6 &-9\\ -15 & -12&9\\ -3&6&-3 \end{pmatrix}


Thus, A1=(211861891815181218918318618318)=(761312562312161316)A^{-1}= \begin{pmatrix} \frac {21}{-18} & \frac 6 {-18}&\frac {-9} {-18}\\ \frac {-15} {-18} & \frac {-12} {-18}&\frac 9 {-18}\\ \frac {-3} {-18}&\frac 6 {-18}& \frac {-3} {-18} \end{pmatrix}=\begin{pmatrix} -\frac 7 6 & -\frac 1 3 & \frac 1 2 \\ \frac 5 6 & \frac 2 3 & -\frac 1 2 \\ \frac 1 6 & -\frac 1 3 & \frac 1 6 \end{pmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment