The inverse of matrix A can be computed using the inverse of matrix formula, by dividing the adjoint of a matrix by the determinant of the matrix.
For a matrix A, its inverse
A−1=1/∣A∣AdjA
∣A∣=1(−1)1+1∣∣5839∣∣+2(−1)1+2∣∣4739∣∣+3(−1)1+3∣∣4758∣∣=
=45−24−2(36−21)+3(32−35)=21−72+42+96−105=−18
AdjA=Transpose of its cofactor matrix
C=⎝⎛+∣∣5839∣∣−∣∣2839∣∣+∣∣2533∣∣−∣∣4739∣∣+∣∣1739∣∣−∣∣1433∣∣+∣∣4758∣∣−∣∣1728∣∣+∣∣1425∣∣⎠⎞ =⎝⎛216−9−15−129−36−3⎠⎞
AdjA=⎝⎛21−15−36−126−99−3⎠⎞
Thus, A−1=⎝⎛−1821−18−15−18−3−186−18−12−186−18−9−189−18−3⎠⎞=⎝⎛−676561−3132−3121−2161⎠⎞
Comments
Leave a comment