inverse of 1 2 3
4 5 3
7 8 9
The inverse of matrix A can be computed using the inverse of matrix formula, by dividing the adjoint of a matrix by the determinant of the matrix.
For a matrix A, its inverse
"A^{-1}=1\/|A| Adj A"
"|A|=1(-1)^{1+1}\\begin{vmatrix}\n 5 & 3 \\\\\n 8 & 9\n\\end{vmatrix}\n+2(-1)^{1+2}\\begin{vmatrix}\n 4 & 3 \\\\\n 7 & 9\n\\end{vmatrix}\n+3(-1)^{1+3}\\begin{vmatrix}\n 4 & 5 \\\\\n 7 & 8\n\\end{vmatrix} ="
"=45-24-2(36-21)+3(32-35)=21-72+42+96-105=-18"
AdjA=Transpose of its cofactor matrix
"C=\\begin{pmatrix}\n +\\begin{vmatrix}\n 5 & 3 \\\\\n 8 & 9\n\\end{vmatrix}& -\\begin{vmatrix}\n 4 & 3 \\\\\n 7 & 9\n\\end{vmatrix} & +\\begin{vmatrix}\n 4 & 5 \\\\\n 7 & 8\n\\end{vmatrix} \\\\\n -\\begin{vmatrix}\n 2& 3 \\\\\n 8 & 9\n\\end{vmatrix}& +\\begin{vmatrix}\n 1 & 3 \\\\\n 7 & 9\n\\end{vmatrix} & -\\begin{vmatrix}\n 1 & 2 \\\\\n 7 & 8\n\\end{vmatrix}\\\\\n +\\begin{vmatrix}\n 2& 3 \\\\\n 5 & 3\n\\end{vmatrix} & -\\begin{vmatrix}\n 1 & 3 \\\\\n 4 & 3\n\\end{vmatrix} &+\\begin{vmatrix}\n 1 & 2 \\\\\n 4 & 5\n\\end{vmatrix}\n\\end{pmatrix}" "=\\begin{pmatrix}\n 21 & -15 &-3 \\\\\n 6 & -12&6\\\\\n-9 & 9&-3\n\\end{pmatrix}"
"AdjA=\\begin{pmatrix}\n 21 & 6 &-9\\\\\n -15 & -12&9\\\\\n -3&6&-3\n\\end{pmatrix}"
Thus, "A^{-1}= \\begin{pmatrix}\n \\frac {21}{-18} & \\frac 6 {-18}&\\frac {-9} {-18}\\\\\n \\frac {-15} {-18} & \\frac {-12} {-18}&\\frac 9 {-18}\\\\\n \\frac {-3} {-18}&\\frac 6 {-18}& \\frac {-3} {-18}\n\\end{pmatrix}=\\begin{pmatrix}\n -\\frac 7 6 & -\\frac 1 3 & \\frac 1 2 \\\\\n \\frac 5 6 & \\frac 2 3 & -\\frac 1 2 \\\\\n \\frac 1 6 & -\\frac 1 3 & \\frac 1 6\n\\end{pmatrix}"
Comments
Leave a comment