Question #333590

let B={1-t,t-t2,2-2t+t2} be an ordered basis for p2

let p(t)=3+t-6t2

  1. find [p(t)]B
1
Expert's answer
2022-04-26T05:34:25-0400

Denote: p1=1tp_1=1-t, p2=tt2p_2=t-t^2, p3=22t+t2p_3=2-2t+t^2. The aim is to find real numbers α1,α2,α3\alpha_1,\alpha_2,\alpha_3 satisfying: p(t)=α1p1+α2p2+α3p3p(t)=\alpha_1p_1+\alpha_2p_2+\alpha_3p_3. We get the following equations for α1\alpha_1, α2\alpha_2 and α3\alpha_3 by considering coefficients near t2t^2, tt, 11: 6=α3α2-6=\alpha_3-\alpha_2, 1=α1+α22α31=-\alpha_1+\alpha_2-2\alpha_3 and 3=α1+2α33=\alpha_1+2\alpha_3. From the first and third equation we get: α2=α3+6\alpha_2=\alpha_3+6, α1=32α3\alpha_1=3-2\alpha_3. By substituting it in the second equation we get: 1=(32α3)+(α3+6)2α31=-(3-2\alpha_3)+(\alpha_3+6)-2\alpha_3. Thus, α3=2\alpha_3=-2, α2=4\alpha_2=4, α1=7\alpha_1=7.

Answer: p(t)=7(1t)+4(tt2)2(22t+t2)p(t)=7(1-t)+4(t-t^2)-2(2-2t+t^2).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS