Question #329409

QUESTION 2 2.1. Find the change of basis matrix P∁←ℬ for the bases

ℬ = {(9, 2), (4, −3)} and ∁= {(2, 1), (−3, 1)} of ℝ2 .


2.2.Verify [v]∁ = P∁←ℬ[v]ℬ for v = (−5, 3). 


1
Expert's answer
2022-04-17T09:38:34-0400

2.1. Denote a1=(9,2),a2=(4,3)a_1=(9,2),a_2=(4,-3) and b1=(2,1),b2=(3,1)b_1=(2,1),b_2=(-3,1). Any vector vv can be presented as: v=α1a1+α2a2v=\alpha_1a_1+\alpha_2a_2 or v=β1b1+β2b2v=\beta_1b_1+\beta_2b_2 with real αi,βj\alpha_i,\beta_j . The aim is to find the matrix TT such that: (β1β2)=T(α1α2)\left(\begin{array}{ll}\beta_1\\\beta_2\end{array}\right)=T\left(\begin{array}{ll}\alpha_1\\\alpha_2\end{array}\right). We may consider two vectors: v1=α11a1+α21a2,v_1=\alpha^1_1a_1+\alpha^1_2a_2,v1=β11b1+β21b2v_1=\beta^1_1b_1+\beta^1_2b_2 and v2=α12a1+α22a2,v2=β12b1+β22b2v_2=\alpha^2_1a_1+\alpha^2_2a_2,v_2=\beta^2_1b_1+\beta^2_2b_2. Then consider equation: (β11β12β21β22)=T(α11α12α21α22)\left(\begin{array}{ll}\beta^1_1&\beta^2_1\\\beta^1_2&\beta^2_2\end{array}\right)=T\left(\begin{array}{ll}\alpha^1_1&\alpha^2_1\\\alpha^1_2&\alpha^2_2\end{array}\right) and receive: (β11β12β21β22)(α11α12α21α22)1=T\left(\begin{array}{ll}\beta^1_1&\beta^2_1\\\beta^1_2&\beta^2_2\end{array}\right)\left(\begin{array}{ll}\alpha^1_1&\alpha^2_1\\\alpha^1_2&\alpha^2_2\end{array}\right)^{-1}=T . As an example we take: v1=a1v_1=a_1 and v2=a2v_2=a_2. Then, (α11α12α21α22)=(1001)\left(\begin{array}{ll}\alpha^1_1&\alpha^2_1\\\alpha^1_2&\alpha^2_2\end{array}\right)=\left(\begin{array}{ll}1&0\\0&1\end{array}\right). a1=β11b1+β21b2,a2=β12b1+β22b2a_1=\beta^1_1b_1+\beta^1_2b_2, a_2=\beta^2_1b_1+\beta^2_2b_2 provide two systems of equations: 9=2β113β219=2\beta_1^1-3\beta_2^1, 2=β11+β212=\beta_1^1+\beta_2^1. We receive: β11=3,β21=1\beta_1^1=3,\beta_2^1=-1. Another system of equations is: 4=2β123β224=2\beta_1^2-3\beta_2^2, 3=β12+β22-3=\beta_1^2+\beta_2^2 . We get: β12=1,β22=2.\beta_1^2=-1,\beta_2^2=-2. Thus, matrix TT has the form: T=(3112)T=\left(\begin{array}{ll}3&-1\\-1&-2\end{array}\right).

2.2. The aim is to find representations of vector vv in basis BB and basis CC. We have: v=β1b1+β2b2v=\beta_1b_1+\beta_2b_2. We receive equations: 2β13β2=5,β1+β2=3.2\beta_1-3\beta_2=-5,\beta_1+\beta_2=3. The solution is: β1=45,β2=115\beta_1=\frac45,\beta_2=\frac{11}{5}. From representation: v=α1a1+α2a2v=\alpha_1a_1+\alpha_2a_2 we get: 9α1+4α2=5,2α13α2=3.9\alpha_1+4\alpha_2=-5,2\alpha_1-3\alpha_2=3. We get: α1=335,α2=3735\alpha_1=-\frac{3}{35},\alpha_2=-\frac{37}{35}. In order to check the transformation, multiply: T(α1α2)=(3112)(3353735)=(45115)T\left(\begin{array}{ll}\alpha_1\\\alpha_2\end{array}\right)=\left(\begin{array}{ll}3&-1\\-1&-2\end{array}\right)\left(\begin{array}{ll}-\frac{3}{35}\\-\frac{37}{35}\end{array}\right)=\left(\begin{array}{ll}\frac{4}{5}\\\frac{11}{5}\end{array}\right). Thus, the transformation is correct.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS