2.1. Denote a1=(9,2),a2=(4,−3) and b1=(2,1),b2=(−3,1). Any vector v can be presented as: v=α1a1+α2a2 or v=β1b1+β2b2 with real αi,βj . The aim is to find the matrix T such that: (β1β2)=T(α1α2). We may consider two vectors: v1=α11a1+α21a2,v1=β11b1+β21b2 and v2=α12a1+α22a2,v2=β12b1+β22b2. Then consider equation: (β11β21β12β22)=T(α11α21α12α22) and receive: (β11β21β12β22)(α11α21α12α22)−1=T . As an example we take: v1=a1 and v2=a2. Then, (α11α21α12α22)=(1001). a1=β11b1+β21b2,a2=β12b1+β22b2 provide two systems of equations: 9=2β11−3β21, 2=β11+β21. We receive: β11=3,β21=−1. Another system of equations is: 4=2β12−3β22, −3=β12+β22 . We get: β12=−1,β22=−2. Thus, matrix T has the form: T=(3−1−1−2).
2.2. The aim is to find representations of vector v in basis B and basis C. We have: v=β1b1+β2b2. We receive equations: 2β1−3β2=−5,β1+β2=3. The solution is: β1=54,β2=511. From representation: v=α1a1+α2a2 we get: 9α1+4α2=−5,2α1−3α2=3. We get: α1=−353,α2=−3537. In order to check the transformation, multiply: T(α1α2)=(3−1−1−2)(−353−3537)=(54511). Thus, the transformation is correct.
Comments