Solve for the determinant in the equation below(10marks)
1.7.1
4−3212−22−1−4\begin{matrix} 4 & -3 & 2 \\ 1 & 2 &-2 \\ 2 & -1 & -4\\ \end{matrix}412−32−12−2−4
1.7.2.
2−21221413\begin{matrix} 2 & -2 & 1 \\ 2 & 2 & 1\\ 4 & 1 & 3 \\ \end{matrix}224−221113
1.7.1.
detA=4⋅2⋅(−4)+(−3)⋅(−2)⋅2+2⋅1⋅(−1)−2⋅2⋅2−4⋅(−2)⋅(−1)−(−3)⋅1⋅(−4)=−32+12−2−8−−8−12=−50det A =4·2·(-4) + (-3)·(-2)·2 + 2·1·(-1) - 2·2·2 - 4·(-2)·(-1) - (-3)·1·(-4) = -32 + 12 - 2 - 8 - - 8 - 12 = -50detA=4⋅2⋅(−4)+(−3)⋅(−2)⋅2+2⋅1⋅(−1)−2⋅2⋅2−4⋅(−2)⋅(−1)−(−3)⋅1⋅(−4)=−32+12−2−8−−8−12=−50
detA=2⋅2⋅3+(−2)⋅1⋅4+1⋅2⋅1−1⋅2⋅4−2⋅1⋅1−(−2)⋅2⋅3=12−8+2−8−2+12=8det A = 2·2·3 + (-2)·1·4 + 1·2·1 - 1·2·4 - 2·1·1 - (-2)·2·3 = 12 - 8 + 2 - 8 - 2 + 12 = 8detA=2⋅2⋅3+(−2)⋅1⋅4+1⋅2⋅1−1⋅2⋅4−2⋅1⋅1−(−2)⋅2⋅3=12−8+2−8−2+12=8
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments