Let v1=(1,1,2,1), v2=(2,1,2,3), v3=(1,4,2,1), v4=(−1,3,5,α).
These vectors are linearly independent if and only if ∣∣121−111432225131α∣∣=0 .
∣∣121−111432225131α∣∣=∣∣10001−1342−207110α+1∣∣=∣∣10001−1002−3−6−1113α+5∣∣=−∣∣10001−1002−3−1−611α+53∣∣=−∣∣10001−1002−3−1011α+5−6α−27∣∣=−1⋅(−1)⋅(−1)⋅(−6α−27)=6α+27=0
Answer: for all values α=−4.5
Comments