Question #314962
  1. For what values of h the vectors



⟶ [ 1 ⟶ [ -1 ⟶ [ 5

u1 = -3 u2 = 9 u3 = -7

-2 ] -6 ] h ]


are linearly independent? (Show all working)


1
Expert's answer
2022-03-21T02:00:32-0400

a=(1,1,5),b=(3,9,7),c=(2,6,h)λ1a+λ2b+λ3c=0λ1=λ2=λ3=0λ1(1,1,5)+λ2(3,9,7)+λ3(2,6,h)==(0,0,0)λ13λ22λ3=0λ1+9λ26λ3=05λ17λ2+hλ3=0Δ=13219657h=9h+9014++903h42=6h+1240h1246h623\vec{a}=(1,-1,5), \vec{b}=(-3,9,-7), \vec{c}=(-2,-6,h)\\ \lambda_1\vec{a}+\lambda_2\vec{b}+\lambda_3\vec{c}=\vec{0}\\ \lambda_1=\lambda_2=\lambda_3=0\\ \lambda_1(1,-1,5)+\lambda_2(-3,9,-7)+\lambda_3(-2,-6,h)=\\=(0,0,0)\\ \lambda_1-3\lambda_2-2\lambda_3=0\\ -\lambda_1+9\lambda_2-6\lambda_3=0\\ 5\lambda_1-7\lambda_2+h\lambda_3=0\\ \Delta= \begin{vmatrix} 1& -3&-2 \\ -1 & 9&-6\\ 5&-7&h \end{vmatrix}=9h+90-14+\\+90-3h-42=6h+124\neq0\\ h\neq-\frac{124}{6}\\ h\neq-\frac{62}{3}\\

If h623,h(,623)(623,)h\neq-\frac{62}{3}, h\in(-\infty,-\frac{62}{3})\cup(-\frac{62}{3},\infty) the vectors a,b,c\vec{a},\vec{b},\vec{c} are linearly independent.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS