Find the nullity and the range of the space spanned by 𝑢 = (1,0,2), 𝑣 = (−3,1,1), 𝑤 = (0,1,4) and 𝑥 = (−1, −3,5)
[1−30−1011−32145]\begin{bmatrix} 1&-3&0&-1\\ 0&1&1&-3\\2&1&4&5 \end{bmatrix}⎣⎡102−311014−1−35⎦⎤
R3−2R1→ R3R_3-2R_1\to\>R_3R3−2R1→R3
R1+3R2→ R1R_1+3R_2\to\>R_1R1+3R2→R1
(103−10011−30747)\begin{pmatrix} 1&&0&&3& &-10\\ 0&&1&&1&&-3\\ 0&&7&&4&&7 \end{pmatrix}⎝⎛100017314−10−37⎠⎞
R3−7R2−3→ R3\frac{R_3-7R_2}{-3}\to\>R_3−3R3−7R2→R3
(103−10011−3001−283)\begin{pmatrix} 1&&0&& 3&&-10 \\ 0&&1& & 1&&-3\\ 0&&0&&1&&\frac{-28}{3} \end{pmatrix}⎝⎛100010311−10−33−28⎠⎞
R1−3R3→ R1R_1-3R_3\to\>R_1R1−3R3→R1
R2−R3→ R2R_2-R_3\to\>R_2R2−R3→R2
rref is [10018010193001−283]\begin{bmatrix} 1&0&0& 18 \\ 0&1&0&\frac{19}{3}\\0&0&1&-\frac{28}{3} \end{bmatrix}⎣⎡10001000118319−328⎦⎤
Nullity =1
Range=[[102],[−311],[014]][\begin{bmatrix} 1 \\0\\ 2 \end{bmatrix},\begin{bmatrix} -3 \\1\\ 1 \end{bmatrix},\begin{bmatrix} 0\\ 1\\4 \end{bmatrix}][⎣⎡102⎦⎤,⎣⎡−311⎦⎤,⎣⎡014⎦⎤]
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments