i) The technical coefficients matrix
The technical coefficient matrix refers to the matrix of B.
B= [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] \begin{bmatrix}
b11 & b12 & b13 \\
b21 & b22 & b23 \\
b31 & b32 & b33 \\
\end{bmatrix} ⎣ ⎡ b 11 b 21 b 31 b 12 b 22 b 32 b 13 b 23 b 33 ⎦ ⎤
where,
b11 = 40/200 = 0.2
b12= 65/325= 0.2
b13= 75/250 = 0.3
b21=60/200 = 0.3
b22=130/325 = 0.4
b23=75/250 = 0.3
b31=80/200= 0.4
b32=65/325 = 0.2
b33= 25/250 = 0.1
hence,
B= [ 0.2 0.2 0.3 0.3 0.4 0.3 0.4 0.2 0.1 ] \begin{bmatrix}
0.2 & 0.2 & 0.3 \\
0.3 & 0.4 & 0.3 \\
0.4 & 0.2 & 0.1 \\
\end{bmatrix} ⎣ ⎡ 0.2 0.3 0.4 0.2 0.4 0.2 0.3 0.3 0.1 ⎦ ⎤ [Answer]
ii) The Leontief’s inverse matrix
Leontief's inverse matrix is given by (I-B)-1
I-B = [ 1 0 0 0 1 0 0 0 1 ] − [ 0.2 0.2 0.3 0.3 0.4 0.3 0.4 0.2 0.1 ] = [ 0.8 − 0.2 − 0.3 − 0.3 0.6 − 0.3 − 0.4 − 0.2 0.9 ] \begin{bmatrix}
1 &0 & 0 \\
0 & 1 & 0 \\
0 & 0 &1 \\
\end{bmatrix} - \begin{bmatrix}
0.2 & 0.2 & 0.3 \\
0.3 & 0.4 & 0.3 \\
0.4 & 0.2 & 0.1 \\
\end{bmatrix}=\begin{bmatrix}
0.8 & -0.2 & -0.3 \\
-0.3 & 0.6 & -0.3 \\
-0.4 & -0.2 & 0.9 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 0 1 ⎦ ⎤ − ⎣ ⎡ 0.2 0.3 0.4 0.2 0.4 0.2 0.3 0.3 0.1 ⎦ ⎤ = ⎣ ⎡ 0.8 − 0.3 − 0.4 − 0.2 0.6 − 0.2 − 0.3 − 0.3 0.9 ⎦ ⎤
(I-B)-1
[ 0.8 − 0.2 − 0.3 − 0.3 0.6 − 0.3 − 0.4 − 0.2 0.9 ] ∣ [ 1 0 0 0 1 0 0 0 1 ] \begin{bmatrix}
0.8 & -0.2 & -0.3 \\
-0.3 & 0.6 & -0.3 \\
-0.4 & -0.2 & 0.9 \\
\end{bmatrix}|\begin{bmatrix}
1 &0 & 0 \\
0 & 1 & 0 \\
0 & 0 &1 \\
\end{bmatrix} ⎣ ⎡ 0.8 − 0.3 − 0.4 − 0.2 0.6 − 0.2 − 0.3 − 0.3 0.9 ⎦ ⎤ ∣ ⎣ ⎡ 1 0 0 0 1 0 0 0 1 ⎦ ⎤ Turn the left matrix into the right matrix
R1 ▶ ( 5 4 \frac{5}{4} 4 5 )R1
[ 1 − 1 4 − 3 8 − 3 10 3 5 − 3 10 − 2 5 − 1 5 9 10 ] ∣ [ 5 4 0 0 0 1 0 0 0 1 ] \begin{bmatrix}
1 & \frac{-1}{4} & \frac{-3}{8} \\
\frac{-3}{10} & \frac{3}{5} & \frac{-3}{10} \\
\frac{-2}{5} &\frac{-1}{5} & \frac{9}{10} \\
\end{bmatrix}|\begin{bmatrix}
\frac{5}{4} &0 & 0 \\
0 & 1 & 0 \\
0 & 0 &1 \\
\end{bmatrix} ⎣ ⎡ 1 10 − 3 5 − 2 4 − 1 5 3 5 − 1 8 − 3 10 − 3 10 9 ⎦ ⎤ ∣ ⎣ ⎡ 4 5 0 0 0 1 0 0 0 1 ⎦ ⎤
R2 ▶ R2- ( − 3 10 \frac{-3}{10} 10 − 3 )R1
[ 1 − 1 4 − 3 8 0 21 40 − 33 80 − 2 5 − 1 5 9 10 ] ∣ [ 5 4 0 0 3 8 1 0 0 0 1 ] \begin{bmatrix}
1 & \frac{-1}{4} & \frac{-3}{8} \\
0 & \frac{21}{40} & \frac{-33}{80} \\
\frac{-2}{5} &\frac{-1}{5} & \frac{9}{10} \\
\end{bmatrix}|\begin{bmatrix}
\frac{5}{4} &0 & 0 \\
\frac{3}{8} & 1 & 0 \\
0 & 0 &1 \\
\end{bmatrix} ⎣ ⎡ 1 0 5 − 2 4 − 1 40 21 5 − 1 8 − 3 80 − 33 10 9 ⎦ ⎤ ∣ ⎣ ⎡ 4 5 8 3 0 0 1 0 0 0 1 ⎦ ⎤
R3 ▶ R3 -( − 2 5 − 5 2 ) R 1 (\displaystyle - \frac{2}{5}
−5
2
)R1 ( − 5 2 − 52 ) R 1
[ 1 − 1 4 − 3 8 0 21 40 − 33 80 0 − 3 10 3 4 ] ∣ [ 5 4 0 0 3 8 1 0 1 2 0 1 ] \begin{bmatrix}
1 & \frac{-1}{4} & \frac{-3}{8} \\
0 & \frac{21}{40} & \frac{-33}{80} \\
0 &\frac{-3}{10} & \frac{3}{4} \\
\end{bmatrix}|\begin{bmatrix}
\frac{5}{4} &0 & 0 \\
\frac{3}{8} & 1 & 0 \\
\frac{1}{2} & 0 &1 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 4 − 1 40 21 10 − 3 8 − 3 80 − 33 4 3 ⎦ ⎤ ∣ ⎣ ⎡ 4 5 8 3 2 1 0 1 0 0 0 1 ⎦ ⎤
R2 ▶ ( 1.90476 ) R 2 (\displaystyle 1.90476)R2 ( 1.90476 ) R 2
[ 1 − 1 4 − 3 8 0 1 − 11 14 0 − 3 10 3 4 ] ∣ [ 5 4 0 0 3 8 40 21 0 1 2 0 1 ] \begin{bmatrix}
1 & \frac{-1}{4} & \frac{-3}{8} \\
0 & 1 & \frac{-11}{14} \\
0 &\frac{-3}{10} & \frac{3}{4} \\
\end{bmatrix}|\begin{bmatrix}
\frac{5}{4} &0 & 0 \\
\frac{3}{8} & \frac{40}{21} & 0 \\
\frac{1}{2} & 0 &1 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 4 − 1 1 10 − 3 8 − 3 14 − 11 4 3 ⎦ ⎤ ∣ ⎣ ⎡ 4 5 8 3 2 1 0 21 40 0 0 0 1 ⎦ ⎤
R3 ▶ R3 - ( − 3 10 ) R 2 (\displaystyle - \frac{3}{10})R2 ( − 10 3 ) R 2
[ 1 − 1 4 − 3 8 0 1 − 11 14 0 0 18 35 ] ∣ [ 5 4 0 0 3 8 40 21 0 5 7 4 7 1 ] \begin{bmatrix}
1 & \frac{-1}{4} & \frac{-3}{8} \\
0 & 1 & \frac{-11}{14} \\
0 &0 & \frac{18}{35} \\
\end{bmatrix}|\begin{bmatrix}
\frac{5}{4} &0 & 0 \\
\frac{3}{8} & \frac{40}{21} & 0 \\
\frac{5}{7} & \frac{4}{7} &1 \\
\end{bmatrix} ⎣ ⎡ 1 0 0 4 − 1 1 0 8 − 3 14 − 11 35 18 ⎦ ⎤ ∣ ⎣ ⎡ 4 5 8 3 7 5 0 21 40 7 4 0 0 1 ⎦ ⎤
R3 ▶ ( 1.94444 ) R 3 (\displaystyle 1.94444)R3 ( 1.94444 ) R 3
[ 1 − 1 4 − 3 8 0 1 − 11 14 0 0 1 ] ∣ [ 5 4 0 0 3 8 40 21 0 25 18 10 9 35 18 ] \begin{bmatrix}
1 & \frac{-1}{4} & \frac{-3}{8} \\
0 & 1 & \frac{-11}{14} \\
0 &0 & 1 \\
\end{bmatrix}|\begin{bmatrix}
\frac{5}{4} &0 & 0 \\
\frac{3}{8} & \frac{40}{21} & 0 \\
\frac{25}{18} & \frac{10}{9} &\frac{35}{18} \\
\end{bmatrix} ⎣ ⎡ 1 0 0 4 − 1 1 0 8 − 3 14 − 11 1 ⎦ ⎤ ∣ ⎣ ⎡ 4 5 8 3 18 25 0 21 40 9 10 0 0 18 35 ⎦ ⎤
R2 ▶ R2 - ( − 0.785714 ) R 3 (\displaystyle -0.785714)R3 ( − 0.785714 ) R 3
[ 1 − 1 4 − 3 8 0 1 0 0 0 1 ] ∣ [ 5 4 0 0 65 36 25 9 55 36 25 18 10 9 35 18 ] \begin{bmatrix}
1 & \frac{-1}{4} & \frac{-3}{8} \\
0 & 1 & 0\\
0 &0 & 1 \\
\end{bmatrix}|\begin{bmatrix}
\frac{5}{4} &0 & 0 \\
\frac{65}{36} & \frac{25}{9} & \frac{55}{36} \\
\frac{25}{18} & \frac{10}{9} &\frac{35}{18} \\
\end{bmatrix} ⎣ ⎡ 1 0 0 4 − 1 1 0 8 − 3 0 1 ⎦ ⎤ ∣ ⎣ ⎡ 4 5 36 65 18 25 0 9 25 9 10 0 36 55 18 35 ⎦ ⎤
R1 ▶ R1 - ( − 3 8 ) R 3 (\displaystyle - \frac{3}{8})R3 ( − 8 3 ) R 3
[ 1 − 1 4 0 0 1 0 0 0 1 ] ∣ [ 85 48 5 12 35 48 65 36 25 9 55 36 25 18 10 9 35 18 ] \begin{bmatrix}
1 & \frac{-1}{4} & 0 \\
0 & 1 & 0\\
0 &0 & 1 \\
\end{bmatrix}|\begin{bmatrix}
\frac{85}{48} &\frac{5}{12} & \frac{35}{48} \\
\frac{65}{36} & \frac{25}{9} & \frac{55}{36} \\
\frac{25}{18} & \frac{10}{9} &\frac{35}{18} \\
\end{bmatrix} ⎣ ⎡ 1 0 0 4 − 1 1 0 0 0 1 ⎦ ⎤ ∣ ⎣ ⎡ 48 85 36 65 18 25 12 5 9 25 9 10 48 35 36 55 18 35 ⎦ ⎤
R1 ▶ R1 - (\displaystyle - \frac{1}{4})R2
[ 1 0 0 0 1 0 0 0 1 ] ∣ [ 20 9 10 9 10 9 65 36 25 9 55 36 25 18 10 9 35 18 ] \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0\\
0 &0 & 1 \\
\end{bmatrix}|\begin{bmatrix}
\frac{20}{9} &\frac{10}{9} & \frac{10}{9} \\
\frac{65}{36} & \frac{25}{9} & \frac{55}{36} \\
\frac{25}{18} & \frac{10}{9} &\frac{35}{18} \\
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 0 1 ⎦ ⎤ ∣ ⎣ ⎡ 9 20 36 65 18 25 9 10 9 25 9 10 9 10 36 55 18 35 ⎦ ⎤
Therefore,
[I-B]-1 = [ 20 9 10 9 10 9 65 36 25 9 55 36 25 18 10 9 35 18 ] \begin{bmatrix}
\frac{20}{9} &\frac{10}{9} & \frac{10}{9} \\
\frac{65}{36} & \frac{25}{9} & \frac{55}{36} \\
\frac{25}{18} & \frac{10}{9} &\frac{35}{18} \\
\end{bmatrix} ⎣ ⎡ 9 20 36 65 18 25 9 10 9 25 9 10 9 10 36 55 18 35 ⎦ ⎤ [Answer]
iii) Compute the output level for each product if the final demand for product A increased by 2000 units, that of product C decreased by 1,000 units and the final demand for product B remained unchanged.
X= [I-B]-1 D
D=[ 20 + 2 60 80 − 1 ] = [ 22 60 79 ] \begin{bmatrix}
20+2 \\
60\\
80-1\\
\end{bmatrix} =
\begin{bmatrix}
22 \\
60\\
79\\
\end{bmatrix} ⎣ ⎡ 20 + 2 60 80 − 1 ⎦ ⎤ = ⎣ ⎡ 22 60 79 ⎦ ⎤
X=[ 20 9 10 9 10 9 65 36 25 9 55 36 25 18 10 9 35 18 ] [ 22 60 89 ] \begin{bmatrix}
\frac{20}{9} &\frac{10}{9} & \frac{10}{9} \\
\frac{65}{36} & \frac{25}{9} & \frac{55}{36} \\
\frac{25}{18} & \frac{10}{9} &\frac{35}{18} \\
\end{bmatrix} \begin{bmatrix}
22 \\
60\\
89\\
\end{bmatrix} ⎣ ⎡ 9 20 36 65 18 25 9 10 9 25 9 10 9 10 36 55 18 35 ⎦ ⎤ ⎣ ⎡ 22 60 89 ⎦ ⎤
Multiply the rows of Matrix A with the columns of Martrix B
X= [ 20.22 9 + 10.60 9 + 10.79 9 22.65 36 + 55.79 36 + 25.60 9 25.25 18 + 10.60 9 + 35.79 18 ] \begin{bmatrix}
\frac{20.22}{9} +\frac{10.60}{9} + \frac{10.79}{9} \\
\frac{22.65}{36} + \frac{55.79}{36} + \frac{25.60}{9} \\
\frac{25.25}{18} + \frac{10.60}{9} +\frac{35.79}{18} \\
\end{bmatrix} ⎣ ⎡ 9 20.22 + 9 10.60 + 9 10.79 36 22.65 + 36 55.79 + 9 25.60 18 25.25 + 9 10.60 + 18 35.79 ⎦ ⎤
=[ 610 3 3925 12 1505 6 ] \begin{bmatrix}
\frac{610}{3} \\
\frac{3925}{12} \\
\frac{1505}{6} \\
\end{bmatrix} ⎣ ⎡ 3 610 12 3925 6 1505 ⎦ ⎤ (In thousands of units) [Answer]
Comments