Question #303982

A company produces three products which are interdependent. These are A, B and C. The flow of inputs and outputs between the products is represented in the table below:


Inputs (in thousands of units)


A B C Final demand


Outputs


(in thousands of units) A


B


C 40


60


80 65


130


65 75


75


25 20


60


80



Required:


i) Derive the technical coefficients matrix (3 marks)


ii) Determine the Leontief’s inverse matrix (12 marks)


iii) Compute the output level for each product if the final demand for product A increased by 2000 units, that of product C decreased by 1,000 units and the final demand for product B remained unchanged. (5 marks)





1
Expert's answer
2022-03-04T11:56:11-0500


i) The technical coefficients matrix

The technical coefficient matrix refers to the matrix of B.

B= [b11b12b13b21b22b23b31b32b33]\begin{bmatrix} b11 & b12 & b13 \\ b21 & b22 & b23 \\ b31 & b32 & b33 \\ \end{bmatrix}

where,

b11 = 40/200 = 0.2

b12= 65/325= 0.2

b13= 75/250 = 0.3


b21=60/200 = 0.3

b22=130/325 = 0.4

b23=75/250 = 0.3


b31=80/200= 0.4

b32=65/325 = 0.2

b33= 25/250 = 0.1

hence,


B= [0.20.20.30.30.40.30.40.20.1]\begin{bmatrix} 0.2 & 0.2 & 0.3 \\ 0.3 & 0.4 & 0.3 \\ 0.4 & 0.2 & 0.1 \\ \end{bmatrix} [Answer]


ii) The Leontief’s inverse matrix

Leontief's inverse matrix is given by (I-B)-1

I-B = [100010001][0.20.20.30.30.40.30.40.20.1]=[0.80.20.30.30.60.30.40.20.9]\begin{bmatrix} 1 &0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 &1 \\ \end{bmatrix} - \begin{bmatrix} 0.2 & 0.2 & 0.3 \\ 0.3 & 0.4 & 0.3 \\ 0.4 & 0.2 & 0.1 \\ \end{bmatrix}=\begin{bmatrix} 0.8 & -0.2 & -0.3 \\ -0.3 & 0.6 & -0.3 \\ -0.4 & -0.2 & 0.9 \\ \end{bmatrix}


(I-B)-1

[0.80.20.30.30.60.30.40.20.9][100010001]\begin{bmatrix} 0.8 & -0.2 & -0.3 \\ -0.3 & 0.6 & -0.3 \\ -0.4 & -0.2 & 0.9 \\ \end{bmatrix}|\begin{bmatrix} 1 &0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 &1 \\ \end{bmatrix} Turn the left matrix into the right matrix


R1  ( 54\frac{5}{4} )R1


[11438310353102515910][5400010001]\begin{bmatrix} 1 & \frac{-1}{4} & \frac{-3}{8} \\ \frac{-3}{10} & \frac{3}{5} & \frac{-3}{10} \\ \frac{-2}{5} &\frac{-1}{5} & \frac{9}{10} \\ \end{bmatrix}|\begin{bmatrix} \frac{5}{4} &0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 &1 \\ \end{bmatrix}


R2 R2- ( 310\frac{-3}{10} )R1


[114380214033802515910][54003810001]\begin{bmatrix} 1 & \frac{-1}{4} & \frac{-3}{8} \\ 0 & \frac{21}{40} & \frac{-33}{80} \\ \frac{-2}{5} &\frac{-1}{5} & \frac{9}{10} \\ \end{bmatrix}|\begin{bmatrix} \frac{5}{4} &0 & 0 \\ \frac{3}{8} & 1 & 0 \\ 0 & 0 &1 \\ \end{bmatrix}


R3  R3 -(255​​2​​)R1(\displaystyle - \frac{2}{5} −​5 ​ ​2 ​​)R1


[11438021403380031034][540038101201]\begin{bmatrix} 1 & \frac{-1}{4} & \frac{-3}{8} \\ 0 & \frac{21}{40} & \frac{-33}{80} \\ 0 &\frac{-3}{10} & \frac{3}{4} \\ \end{bmatrix}|\begin{bmatrix} \frac{5}{4} &0 & 0 \\ \frac{3}{8} & 1 & 0 \\ \frac{1}{2} & 0 &1 \\ \end{bmatrix}


R2  (1.90476)R2(\displaystyle 1.90476)R2


[11438011114031034][540038402101201]\begin{bmatrix} 1 & \frac{-1}{4} & \frac{-3}{8} \\ 0 & 1 & \frac{-11}{14} \\ 0 &\frac{-3}{10} & \frac{3}{4} \\ \end{bmatrix}|\begin{bmatrix} \frac{5}{4} &0 & 0 \\ \frac{3}{8} & \frac{40}{21} & 0 \\ \frac{1}{2} & 0 &1 \\ \end{bmatrix}


R3  R3 - (310​​)R2(\displaystyle - \frac{3}{10}​​)R2


[11438011114001835][5400384021057471]\begin{bmatrix} 1 & \frac{-1}{4} & \frac{-3}{8} \\ 0 & 1 & \frac{-11}{14} \\ 0 &0 & \frac{18}{35} \\ \end{bmatrix}|\begin{bmatrix} \frac{5}{4} &0 & 0 \\ \frac{3}{8} & \frac{40}{21} & 0 \\ \frac{5}{7} & \frac{4}{7} &1 \\ \end{bmatrix}



R3  (1.94444)R3(\displaystyle 1.94444)R3


[11438011114001][5400384021025181093518]\begin{bmatrix} 1 & \frac{-1}{4} & \frac{-3}{8} \\ 0 & 1 & \frac{-11}{14} \\ 0 &0 & 1 \\ \end{bmatrix}|\begin{bmatrix} \frac{5}{4} &0 & 0 \\ \frac{3}{8} & \frac{40}{21} & 0 \\ \frac{25}{18} & \frac{10}{9} &\frac{35}{18} \\ \end{bmatrix}


R2  R2 - (0.785714)R3(\displaystyle -0.785714)R3


[11438010001][54006536259553625181093518]\begin{bmatrix} 1 & \frac{-1}{4} & \frac{-3}{8} \\ 0 & 1 & 0\\ 0 &0 & 1 \\ \end{bmatrix}|\begin{bmatrix} \frac{5}{4} &0 & 0 \\ \frac{65}{36} & \frac{25}{9} & \frac{55}{36} \\ \frac{25}{18} & \frac{10}{9} &\frac{35}{18} \\ \end{bmatrix}


R1  R1 - (38​​)R3(\displaystyle - \frac{3}{8}​​)R3


[1140010001][854851235486536259553625181093518]\begin{bmatrix} 1 & \frac{-1}{4} & 0 \\ 0 & 1 & 0\\ 0 &0 & 1 \\ \end{bmatrix}|\begin{bmatrix} \frac{85}{48} &\frac{5}{12} & \frac{35}{48} \\ \frac{65}{36} & \frac{25}{9} & \frac{55}{36} \\ \frac{25}{18} & \frac{10}{9} &\frac{35}{18} \\ \end{bmatrix}


R1  R1 - (\displaystyle - \frac{1}{4}​​)R2


[100010001][2091091096536259553625181093518]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0\\ 0 &0 & 1 \\ \end{bmatrix}|\begin{bmatrix} \frac{20}{9} &\frac{10}{9} & \frac{10}{9} \\ \frac{65}{36} & \frac{25}{9} & \frac{55}{36} \\ \frac{25}{18} & \frac{10}{9} &\frac{35}{18} \\ \end{bmatrix}


Therefore,

[I-B]-1= [2091091096536259553625181093518]\begin{bmatrix} \frac{20}{9} &\frac{10}{9} & \frac{10}{9} \\ \frac{65}{36} & \frac{25}{9} & \frac{55}{36} \\ \frac{25}{18} & \frac{10}{9} &\frac{35}{18} \\ \end{bmatrix} [Answer]


iii) Compute the output level for each product if the final demand for product A increased by 2000 units, that of product C decreased by 1,000 units and the final demand for product B remained unchanged.

X= [I-B]-1D


D=[20+260801]=[226079]\begin{bmatrix} 20+2 \\ 60\\ 80-1\\ \end{bmatrix} = \begin{bmatrix} 22 \\ 60\\ 79\\ \end{bmatrix}


X=[2091091096536259553625181093518][226089]\begin{bmatrix} \frac{20}{9} &\frac{10}{9} & \frac{10}{9} \\ \frac{65}{36} & \frac{25}{9} & \frac{55}{36} \\ \frac{25}{18} & \frac{10}{9} &\frac{35}{18} \\ \end{bmatrix} \begin{bmatrix} 22 \\ 60\\ 89\\ \end{bmatrix}


Multiply the rows of Matrix A with the columns of Martrix B


X= [20.229+10.609+10.79922.6536+55.7936+25.60925.2518+10.609+35.7918]\begin{bmatrix} \frac{20.22}{9} +\frac{10.60}{9} + \frac{10.79}{9} \\ \frac{22.65}{36} + \frac{55.79}{36} + \frac{25.60}{9} \\ \frac{25.25}{18} + \frac{10.60}{9} +\frac{35.79}{18} \\ \end{bmatrix}


=[610339251215056]\begin{bmatrix} \frac{610}{3} \\ \frac{3925}{12} \\ \frac{1505}{6} \\ \end{bmatrix} (In thousands of units) [Answer]



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS