Question #303451

Determmine value of k such that



Kx+y+z=1



X+ky+z=1



X+y+kz=1 has a) no solution b) unique solution c) more than one solution





1
Expert's answer
2022-02-28T15:32:55-0500
detA=k111k111k=kk11k111k+1k11\det A=\begin{vmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{vmatrix}=k\begin{vmatrix} k & 1 \\ 1 & k \end{vmatrix}-\begin{vmatrix} 1& 1 \\ 1 & k \end{vmatrix}+\begin{vmatrix} 1 & k \\ 1 & 1 \end{vmatrix}

=k(k21)(k1)+(1k)=k(k^2-1)-(k-1)+(1-k)

k3kk+1+1k=k33k+2k^3-k-k+1+1-k=k^3-3k+2

=k2(k1)+k(k1)2(k1)=k^2(k-1)+k(k-1)-2(k-1)




=(k1)(k2+k2)=(k1)2(k+2)=(k-1)(k^2+k-2)=(k-1)^2(k+2)

Nonhomogeneous system of linear equations has a unique non-trivial solution if and only if


detA0=>(k1)2(k+2)0\det A\not=0=>(k-1)^2(k+2)\not=0

The system has a unique non-trivial solution if kR,k1,k2.k\in \R, k\not=1, k\not=-2.


If k=1,k=1, we have


x+y+z=1x+y+z=1x+y+z=1\begin{matrix} x+y+z=1\\ x+y+z=1\\ x+y+z=1\\ \end{matrix}

The system has an infinite number of solutions if k=1.k=1.


If k=2,k=-2, we have


2x+y+z=1x2y+z=1x+y2z=1\begin{matrix} -2x+y+z=1\\ x-2y+z=1\\ x+y-2z=1\\ \end{matrix}




3x+3y=03y3z=0x+y2z=1\begin{matrix} -3x+3y=0\\ 3y-3z=0\\ x+y-2z=1\\ \end{matrix}




x=yy=zy+y2y=1\begin{matrix} x=y\\ y=z\\ y+y-2y=1\\ \end{matrix}



The system has no solution if k=2.k=-2.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS