Question #301382

2a. Solve the quadratic equation

3z2 + (a - i)z + 3i = 0.


b. Solve the following system of equations of complex numbers:


z + iw = 1 + 2i

z - w = 1 -2i




1
Expert's answer
2022-02-23T12:51:23-0500

a.


3z2+(ai)z+3i=0.3z^2 + (a - i)z + 3i = 0.

D=(ai)24(3)(3i)=a22ai136iD=(a-i)^2-4(3)(3i)=a^2-2ai-1-36i

=a212(a+18)i=a^2-1-2(a+18)i

z1=a+ia212(a+18)i6z_1=\dfrac{-a+i-\sqrt{a^2-1-2(a+18)i}}{6}

z2=1+i+a212(a+18)i6z_2=\dfrac{-1+i+\sqrt{a^2-1-2(a+18)i}}{6}

b.


z+iw=1+2iz + iw = 1 + 2izw=12iz - w = 1 -2i


w(i+1)=4iw(i+1) =4iz(1+i)=3+3iz(1+i)= 3+3i

w=4i1+iw=\dfrac{4i}{1+i}z=3z=3

w=2+2iw=2+2iz=3z=3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS