Find the conical form of a quadratic form Q(x,y)=2x^2+2y^2-2xy by using an orthogonal transformation hence find nature,rank,index and signature of the conical form?
"\\displaystyle\nQ(x,y)=2x^2-2xy+2y^2=2x^2-xy-yx+2y^2\\\\"
"\\displaystyle\n=\\begin{pmatrix}\n x & y \n\\end{pmatrix}\\begin{pmatrix}\n 2 & -1 \\\\\n -1 & 2\n\\end{pmatrix}\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}"
Since "\\displaystyle\nA=\\begin{pmatrix}\n 2 & -1 \\\\\n -1 & 2\n\\end{pmatrix}" is symmetric then it "A" is orthogonally diagonalizable and has real eigenvalues.
Now, the eigenvalues of "A" are "\\displaystyle\n\\lambda_1=1\\text{ and }\\lambda_2=3."
An eigenvector corresponding to the eigenvalue "\\displaystyle\n\\lambda_1=1" is;
"\\displaystyle\n\\begin{pmatrix}\n 1 \\\\\n 1\n\\end{pmatrix}"
and an eigenvector corresponding to the eigenvalue "\\displaystyle\n\\lambda_2=3" is;
"\\displaystyle\n\\begin{pmatrix}\n 1 \\\\\n -1\n\\end{pmatrix}"
Hence, the eigenvectors "\\displaystyle\n(1,\\ 1)\\text{ and }(1,\\ -1)" form an orthogonal basis for "\\R^2". Normalizing each of these eigenvectors produces an orthonormal basis;
"\\displaystyle\np_1=\\frac{(1,\\ 1)}{\\|(1,\\ 1)\\|}=\\left(\\frac{1}{\\sqrt{2}},\\ \\frac{1}{\\sqrt{2}}\\right)", "\\displaystyle\np_2=\\frac{(1,\\ -1)}{\\|(1,\\ -1)\\|}=\\left(\\frac{1}{\\sqrt{2}},\\ -\\frac{1}{\\sqrt{2}}\\right)"
Using "\\displaystyle\np_1 \\text{ and }p_2" as column vectors, construct the matrix "P" such that;
"\\displaystyle\nP=\\begin{pmatrix}\n \\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{2}} \\\\\n \\frac{1}{\\sqrt{2}} & -\\frac{1}{\\sqrt{2}}\n\\end{pmatrix}"
Hence, the transformation "\\displaystyle\n\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}=\\begin{pmatrix}\n \\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{2}} \\\\\n \\frac{1}{\\sqrt{2}} & -\\frac{1}{\\sqrt{2}}\n\\end{pmatrix}\\begin{pmatrix}\n m \\\\\n n\n\\end{pmatrix}" transforms "Q(x,y)" to sum of squares or canonical form.
That is;
"\\displaystyle\nQ(x,y)=\\begin{pmatrix}\n x & y \n\\end{pmatrix}\\begin{pmatrix}\n 2 & -1 \\\\\n -1 & 2\n\\end{pmatrix}\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}"
"\\displaystyle\n\\Rightarrow Q(m,n)=\\left(\\begin{pmatrix}\n \\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{2}} \\\\\n \\frac{1}{\\sqrt{2}} & -\\frac{1}{\\sqrt{2}}\n\\end{pmatrix}\\begin{pmatrix}\n m \\\\\n n\n\\end{pmatrix}\\right)^T\\begin{pmatrix}\n 2 & -1 \\\\\n -1 & 2\n\\end{pmatrix}\\begin{pmatrix}\n \\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{2}} \\\\\n \\frac{1}{\\sqrt{2}} & -\\frac{1}{\\sqrt{2}}\n\\end{pmatrix}\\begin{pmatrix}\n m \\\\\n n\n\\end{pmatrix}"
"\\displaystyle\n=(m\\ \\ n)\\begin{pmatrix}\n \\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{2}} \\\\\n \\frac{1}{\\sqrt{2}} & -\\frac{1}{\\sqrt{2}}\n\\end{pmatrix}^T\\begin{pmatrix}\n 2 & -1 \\\\\n -1 & 2\n\\end{pmatrix}\\begin{pmatrix}\n \\frac{1}{\\sqrt{2}} & \\frac{1}{\\sqrt{2}} \\\\\n \\frac{1}{\\sqrt{2}} & -\\frac{1}{\\sqrt{2}}\n\\end{pmatrix}\\begin{pmatrix}\n m \\\\\n n\n\\end{pmatrix}"
"\\displaystyle\n=(m\\ \\ n)\\begin{pmatrix}\n 1 & 0 \\\\\n 0 & 3\n\\end{pmatrix}\\begin{pmatrix}\n m \\\\\n n\n\\end{pmatrix}""\\displaystyle\n=m^2+3n^2"
which is the canonical form of the given quadratic form.
Nature: it is positive definite in nature since all eigenvalues are positive numbers.
Rank: of a quadratic from is the number of square terms in its canonical form. So rank of "Q(x,y)=2"
Index: of a quadratic from is the number of positive square terms in its canonical from. So the index of "Q(x,y)=2"
Signature: of "Q(x,y)=" (number of positive square terms)- (number of negative square terms)"=2"
Comments
Leave a comment