Answer to Question #294555 in Linear Algebra for Ilyas

Question #294555

Find the product of eigen value of matrix

1
Expert's answer
2022-02-07T14:18:31-0500

From the property of eigenvalues, the product of eigenvalues of a matrix equals the determinant of the matrix.

Now, the given matrix is;

P=[201433021]\displaystyle P=\begin{bmatrix} 2 & 0&1 \\ 4 & -3&3\\ 0&2&-1 \end{bmatrix}, and P=201433021=23321+14302=2(36)+1(80)  =2(3)+1(8)=6+8=2\displaystyle |P|=\begin{vmatrix} 2 & 0 & 1 \\ 4 & -3 & 3\\ 0 & 2 & -1 \end{vmatrix}=2\begin{vmatrix} -3 & 3 \\ 2 & -1 \end{vmatrix}+1\begin{vmatrix} 4 & -3 \\ 0 & 2 \end{vmatrix}=2(3-6)+1(8-0)\\\quad\ \ =2(-3)+1(8)=-6+8=2

Thus, the product of the eigenvalues of P=[201433021]\displaystyle P=\begin{bmatrix} 2 & 0&1 \\ 4 & -3&3\\ 0&2&-1 \end{bmatrix}is 2.2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment