Find the product of eigen value of matrix
From the property of eigenvalues, the product of eigenvalues of a matrix equals the determinant of the matrix.
Now, the given matrix is;
P=[2014−3302−1]\displaystyle P=\begin{bmatrix} 2 & 0&1 \\ 4 & -3&3\\ 0&2&-1 \end{bmatrix}P=⎣⎡2400−3213−1⎦⎤, and ∣P∣=∣2014−3302−1∣=2∣−332−1∣+1∣4−302∣=2(3−6)+1(8−0) =2(−3)+1(8)=−6+8=2\displaystyle |P|=\begin{vmatrix} 2 & 0 & 1 \\ 4 & -3 & 3\\ 0 & 2 & -1 \end{vmatrix}=2\begin{vmatrix} -3 & 3 \\ 2 & -1 \end{vmatrix}+1\begin{vmatrix} 4 & -3 \\ 0 & 2 \end{vmatrix}=2(3-6)+1(8-0)\\\quad\ \ =2(-3)+1(8)=-6+8=2∣P∣=∣∣2400−3213−1∣∣=2∣∣−323−1∣∣+1∣∣40−32∣∣=2(3−6)+1(8−0) =2(−3)+1(8)=−6+8=2
Thus, the product of the eigenvalues of P=[2014−3302−1]\displaystyle P=\begin{bmatrix} 2 & 0&1 \\ 4 & -3&3\\ 0&2&-1 \end{bmatrix}P=⎣⎡2400−3213−1⎦⎤is 2.2.2.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments