Question #294190

Reduce the quadratic form 2𝑥

2 + 2𝑦

2 + 2𝑧

2 + 2𝑦𝑧 to the canonical form by 

orthogonal reduction. Find the index, signature and nature of the quadratic form.


1
Expert's answer
2022-02-08T12:30:59-0500

Matrix A=(200021012)=\begin{pmatrix} 2&0&0 \\ 0&2&1 \\ 0&1&2 \end{pmatrix}



AλI=2λ0002λ1012λ=0\>\>\begin{vmatrix} A-\lambda\>I \\ \end{vmatrix}=\begin{vmatrix} 2-\lambda&0&0 \\ 0&2-\lambda& 1\\ 0&1&2-\lambda \end{vmatrix}=0



(2λ)[(2λ)(2λ)1]+0+0=0(2-\lambda)\begin{bmatrix} (2-\lambda)(2-\lambda)-1\\ \end{bmatrix}+0+0=0


(2λ)(λ24λ+3)=0(2-\lambda)(\lambda^2-4\lambda+3)=0

(2λ)(λ1)(λ3)=0(2-\lambda)(\lambda-1)(\lambda-3)=0

λ=1,λ=2,λ=3\lambda=1,\lambda=2,\lambda=3


For λ=1,(100011011)(x1x2x3)=(000)\lambda=1,\begin{pmatrix} 1&0&0 \\ 0&1&1 \\ 0&1&1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0\\ 0 \end{pmatrix}


x1=0,x2=1,x3=1x_1=0,\>x_2=-1,\>x_3=1



For λ=2(000001010)(x1x2x3)=(000)\lambda=2\begin{pmatrix} 0&0 & 0 \\ 0&0 & 1\\ 0&1&0 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}


x1=1,x2=0,x3=0x_1=1,\>x_2=0,\>x_3=0


For λ=3(100011011)(x1x2x3)=(000)\lambda=3\begin{pmatrix} -1&0&0 \\ 0&-1 & 1\\ 0&1&-1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2\\ x_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0\\ 0 \end{pmatrix}


x1=0,x2=1,x3=1x_1=0,\>x_2=1,\>x_3=1



Modal matrix (010101101)\begin{pmatrix} 0&1&0 \\ -1&0&1\\ 1&0&1 \end{pmatrix}


Normalized modal matrix

Q=(0101201212012)Q=\begin{pmatrix} 0&1&0 \\ \frac{-1}{\sqrt2} & 0&\frac{1}{\sqrt2}\\ \frac{1}{\sqrt2}&0&\frac{1}{\sqrt2} \end{pmatrix}



Diagonalizing matrix

D=QTAQ=(0121210001212)(200021012)(0101201212012)D=Q^TAQ=\begin{pmatrix} 0&\frac{-1}{\sqrt2}& \frac{1}{\sqrt2} \\ 1&0&0 \\ 0&\frac{1}{\sqrt2}&\frac{1}{\sqrt2} \end{pmatrix}\begin{pmatrix} 2&0&0 \\ 0&2 & 1\\ 0&1&2 \end{pmatrix}\begin{pmatrix} 0&1&0 \\ \frac{-1}{\sqrt2}&0&\frac{1}{\sqrt2} \\ \frac{1}{\sqrt2}&0&\frac{1}{\sqrt2} \end{pmatrix}



=(100020003)=\begin{pmatrix} 1&0&0 \\ 0&2& 0\\ 0&0&3 \end{pmatrix}


Diagonalized matrix has principal diagonal element =Eigenvalues

All other elements=0=0


The orthogonal transformation reduces the quadratic form to conical form

y12+2y22+3y32y_1^2+2y_2^2+3y_3^2


Index=3=3

Signature=2×33=3=2×3-3=3

Nature of quadratic form

Positive definate



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS