Matrix A=⎝⎛200021012⎠⎞
∣∣A−λI∣∣=∣∣2−λ0002−λ1012−λ∣∣=0
(2−λ)[(2−λ)(2−λ)−1]+0+0=0
(2−λ)(λ2−4λ+3)=0
(2−λ)(λ−1)(λ−3)=0
λ=1,λ=2,λ=3
For λ=1,⎝⎛100011011⎠⎞⎝⎛x1x2x3⎠⎞=⎝⎛000⎠⎞
x1=0,x2=−1,x3=1
For λ=2⎝⎛000001010⎠⎞⎝⎛x1x2x3⎠⎞=⎝⎛000⎠⎞
x1=1,x2=0,x3=0
For λ=3⎝⎛−1000−1101−1⎠⎞⎝⎛x1x2x3⎠⎞=⎝⎛000⎠⎞
x1=0,x2=1,x3=1
Modal matrix ⎝⎛0−11100011⎠⎞
Normalized modal matrix
Q=⎝⎛02−12110002121⎠⎞
Diagonalizing matrix
D=QTAQ=⎝⎛0102−102121021⎠⎞⎝⎛200021012⎠⎞⎝⎛02−12110002121⎠⎞
=⎝⎛100020003⎠⎞
Diagonalized matrix has principal diagonal element =Eigenvalues
All other elements=0
The orthogonal transformation reduces the quadratic form to conical form
y12+2y22+3y32
Index=3
Signature=2×3−3=3
Nature of quadratic form
Positive definate
Comments