Question #293865

Express v = t2+4t-3 in P(t) as a linear combination of the









polynomials p =t2−2t+5,p =2t2 −3tand p =t+1.

1
Expert's answer
2022-02-06T15:20:19-0500

v=t2+4t3p1=t22t+5p2=2t23tp3=t+1v=Ap1+Bp2+Cp3v=t^2+4t-3\\ p_1=t^2-2t+5\\ p_2=2t^2-3t\\ p_3=t+1\\ v=Ap_1+Bp_2+Cp_3

t2+4t3==A(t22t+5)+B(2t23t)+C(t+1)t^2+4t-3=\\ =A(t^2-2t+5)+B(2t^2-3t)+C(t+1)\\

t2:A+2B=1t:2A3B+C=4t0:5A+C=3t^2: A+2B=1\\ t:-2A-3B+C=4\\ t^0: 5A+C=-3

(120123145013)\begin{pmatrix} 1 & 2&0&|&1 \\ -2&-3&1&|&4\\ 5&0&1&|&-3 \end{pmatrix}\mapsto

2r+1r(2)

3r+1r(-5)

(1201011601018)\begin{pmatrix} 1 & 2&0&|&1 \\ 0&1&1&|&6\\ 0&-10&1&|&-8 \end{pmatrix}\mapsto

3r+2r(10)

(12010116001152)\begin{pmatrix} 1 & 2&0&|&1 \\ 0&1&1&|&6\\ 0&0&11&|&52 \end{pmatrix}\mapsto

3r(111\frac{1}{11} )

(120101160015211)\begin{pmatrix} 1 & 2&0&|&1 \\ 0&1&1&|&6\\ 0&0&1&|&\frac{52}{11} \end{pmatrix}\mapsto

2r+3r(-1)

(120101014110015211)\begin{pmatrix} 1 & 2&0&|&1 \\ 0&1&0&|&\frac{14}{11}\\ 0&0&1&|&\frac{52}{11} \end{pmatrix}\mapsto

1r+2r(-2)

(100171101014110015211)\begin{pmatrix} 1 & 0&0&|&-\frac{17}{11} \\ 0&1&0&|&\frac{14}{11}\\ 0&0&1&|&\frac{52}{11} \end{pmatrix}

A=1711,B=1411,C=5211v=t2+4t3=1711(t22t+5)++1411(2t23t)+5211(t+1)A=-\frac{17}{11}, B=\frac{14}{11}, C=\frac{52}{11}\\ v=t^2+4t-3=-\frac{17}{11}(t^2-2t+5)+\\ +\frac{14}{11}(2t^2-3t)+\frac{52}{11}(t+1)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS