Question 1. Let u = (2,1,0,5) e R2. Apply the process of inner product spaces.
1] The length of u is;
∥u∥=u⋅u=[(2,1,0,5)⋅(2,1,0,5)]12=[2×2+1×1+0×0+5×5]12 =[4+1+0+25]12=30\displaystyle \|u\|=\sqrt{u\cdot u}=[(2,1,0,5)\cdot(2,1,0,5)]^{\frac{1}{2}}=[2\times2+1\times1+0\times0+5\times5]^{\frac{1}{2}}\\ \qquad\ =[4+1+0+25]^{\frac{1}{2}}=\sqrt{30}∥u∥=u⋅u=[(2,1,0,5)⋅(2,1,0,5)]21=[2×2+1×1+0×0+5×5]21 =[4+1+0+25]21=30
2] The normalized vector of u is;
u∥u∥=130(2,1,0,5)\displaystyle \frac{u}{\|u\|}=\frac{1}{\sqrt{30}}(2,1,0,5)∥u∥u=301(2,1,0,5)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments